1887

Abstract

Three independent isolates (10022, 10 009 and 10011) of a novel catalase-positive, Gram-stain-negative coccus in the genus were obtained from the rectal contents of plateau pika on the Qinghai–Tibet Plateau, PR China. Based on 16S rRNA gene sequence analysis, our newly identified organisms were most closely related to , and with similarities ranging from 98.02 to 98.45 %, followed by seven other species in the genus . Phylogenetic analysis based on 16S rRNA and genes showed that our three novel isolates group with members of the genus . Results of the average nucleotide identity (ANI) analysis confirmed that our isolates are of the same species, and the ANI values between type strain 10022 and other species are 74.12–85.06 %, lower than the threshold range of 95–96 %. The major cellular fatty acids for our novel species are C and Cω7/Cω6, which along with their phenotypic characteristics can distinguish our isolates from other species. On the basis of polyphasic analyses, our isolates are proposed to represent a novel species in genus , with the name sp. nov. The type strain is 10022 (=DSM 103441=CGMCC 1.15732).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003466
2019-08-01
2019-08-19
Loading full text...

Full text loading...

References

  1. Bai X, Lu S, Yang J, Jin D, Pu J et al. Precise fecal microbiome of the herbivorous tibetan antelope inhabiting high-altitude alpine plateau. Front Microbiol 2018;9:2321 [CrossRef][PubMed]
    [Google Scholar]
  2. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect 2017;6:1–8 [CrossRef][PubMed]
    [Google Scholar]
  3. Wang X, Yang J, Lu S, Lai XH, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018;68:3874–3880 [CrossRef][PubMed]
    [Google Scholar]
  4. Meng X, Lu S, Lai XH, Wang Y, Wen Y et al. Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus. Int J Syst Evol Microbiol 2017;67:1873–1879 [CrossRef][PubMed]
    [Google Scholar]
  5. Niu L, Lu S, Lai XH, Hu S, Chen C et al. Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana. Int J Syst Evol Microbiol 2017;67:256–261 [CrossRef][PubMed]
    [Google Scholar]
  6. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcuspantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016;66:3281–3286 [CrossRef][PubMed]
    [Google Scholar]
  7. Meng X, Lu S, Wang Y, Lai XH, Wen Y et al. Actinomyces vulturis sp. nov., isolated from Gyps himalayensis. Int J Syst Evol Microbiol 2017;67:1720–1726 [CrossRef][PubMed]
    [Google Scholar]
  8. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013;13:141 [CrossRef][PubMed]
    [Google Scholar]
  9. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002;Chapter 2:2.3.1–2.3.2 [CrossRef][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  11. McCarthy A. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol 2010;17:675–676 [CrossRef][PubMed]
    [Google Scholar]
  12. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015;33:623–630 [CrossRef][PubMed]
    [Google Scholar]
  13. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 2016;44:D694–D697 [CrossRef][PubMed]
    [Google Scholar]
  14. Bennett JS, Jolley KA, Maiden MC. Genome sequence analyses show that Neisseria oralis is the same species as 'Neisseria mucosa var. heidelbergensis'. Int J Syst Evol Microbiol 2013;63:3920–3926 [CrossRef][PubMed]
    [Google Scholar]
  15. Bennett JS, Watkins ER, Jolley KA, Harrison OB, Maiden MC. Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene. J Clin Microbiol 2014;52:1375–1381 [CrossRef][PubMed]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang G, Yang J, Lai X-H, Lu S, Jin D et al. Neisseria chenwenguii sp. nov. isolated from the rectal contents of a plateau pika (Ochotona curzoniae). Antonie van Leeuwenhoek 2019;104: [CrossRef]
    [Google Scholar]
  18. Wolfgang WJ, Passaretti TV, Jose R, Cole J, Coorevits A et al. Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples. Int J Syst Evol Microbiol 2013;63:1323–1328 [CrossRef][PubMed]
    [Google Scholar]
  19. Vandamme P, Holmes B, Bercovier H, Coenye T. Classification of centers for disease control group eugonic fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 2006;56:1801–1805 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee MY, Park EG, Choi JY, Cheong HS, Chung DR et al. 'Neisseria skkuensis' sp. nov., isolated from the blood of a diabetic patient with a foot ulcer. J Med Microbiol 2010;59:856–859 [CrossRef][PubMed]
    [Google Scholar]
  21. Wolfgang WJ, Carpenter AN, Cole JA, Gronow S, Habura A et al. Neisseria wadsworthii sp. nov. and Neisseria shayeganii sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 2011;61:91–98 [CrossRef][PubMed]
    [Google Scholar]
  22. Hansen CM, Himschoot EA, Hare RF, Meixell BW, Hemert CV et al. Neisseria arctica sp. nov., isolated from nonviable eggs of greater white-fronted geese (Anser albifrons) in Arctic Alaska. Int J Syst Evol Microbiol 2017;67:1115–1119 [CrossRef][PubMed]
    [Google Scholar]
  23. Wroblewski D, Cole J, McGinnis J, Perez M, Wilson H et al. Neisseria dumasiana sp. nov. from human sputum and a dog's mouth. Int J Syst Evol Microbiol 2017;67:4304–4310 [CrossRef][PubMed]
    [Google Scholar]
  24. Volokhov DV, Amselle M, Bodeis-Jones S, Delmonte P, Zhang S et al. Neisseria zalophi sp. nov., isolated from oral cavity of California sea lions (Zalophus californianus). Arch Microbiol 2018;200:819–828 [CrossRef][PubMed]
    [Google Scholar]
  25. Weyand NJ, Ma M, Phifer-Rixey M, Taku NA, Rendón MA et al. Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse. Int J Syst Evol Microbiol 2016;66:3585–3593 [CrossRef][PubMed]
    [Google Scholar]
  26. Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 1997;47:670–677 [CrossRef][PubMed]
    [Google Scholar]
  27. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S et al. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 2016;66:5444–5451 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003466
Loading
/content/journal/ijsem/10.1099/ijsem.0.003466
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error