1887

Abstract

Two unusual catalase-negative, Gram-stain-positive, -like isolates that were referred to the CDC Laboratory for identification are described. Strain SS1994 was isolated from ground beef and strain SS1995 was isolated from a human foot wound. Comparative 16S rRNA gene sequence analysis of isolates SS1994 and SS1995 against type strain sequences supported their inclusion in the genus . Strain SS1994 showed high sequence similarity (>97.0 %) to the two most recently proposed species, (99.2 %) and (99.0 %) followed by (98.8 %), strain SS1995 (98.6 %), (98.0 %), (98.0 %) and (97.9 %). The 16S rRNA gene sequence of strain SS1995 was most similar to (99.1 %), followed by SS1994 (98.6 %), (98.4 %), (98.1 %), (97.8 %), and both and (97.5 %). A polyphasic taxonomic study using conventional biochemical and the rapid ID 32 STREP system, MALDI-TOF MS, cell fatty acid analysis, pairwise sequence comparisons of the 16S rRNA, , , and genes, and comparative core and whole genome sequence analyses revealed that strains SS1994 and SS1995 were two novel species. The novel taxonomic status of the two isolates was confirmed with core genome phylogeny, average nucleotide identity <84 % and DNA–DNA hybridization <28 % to any other species. The names SS1994=(CCUG 70831=LMG 30164) and SS1995=(CCUG 70832=LMG 30165) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003459
2019-08-01
2019-10-14
Loading full text...

Full text loading...

References

  1. Teixeira LM, Carvalho MG, Merquior VL, Steigerwalt AG, Brenner DJ et al. Phenotypic and genotypic characterization of Vagococcus fluvialis, including strains isolated from human sources. J Clin Microbiol 1997;35:2778–2781[PubMed]
    [Google Scholar]
  2. Teixeira LM, Merquior VLC, Shewmaker PL. Vagococcus. In Batt CA, Totorello ML. (editors) Encyclopedia of Food Microbiology Elsevier Ltd, Academic Press; 2014; pp.673–679
    [Google Scholar]
  3. Collins MD, Ash C, Farrow JAE, Wallbanks S, Williams M. Ribosomal ribonucleic acid sequences analysis of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J Appl Bacteriol 1989;73:433–437
    [Google Scholar]
  4. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  5. Wallbanks S, Martinez-Murcia AJ, Fryer JL, Phillips BA, Collins MD. 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int J Syst Bacteriol 1990;40:224–230 [CrossRef][PubMed]
    [Google Scholar]
  6. Hoyles L, Lawson PA, Foster G, Falsen E, Ohlen M et al. Vagococcus fessus sp. nov., isolated from a seal and a harbour porpoise. Int J Syst Evol Microbiol 2000;50:1151–1154 [CrossRef]
    [Google Scholar]
  7. Lawson PA, Foster G, Falsen E, Ohlén M, Collins MD. Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int J Syst Bacteriol 1999;49 Pt 3:1251–1254 [CrossRef][PubMed]
    [Google Scholar]
  8. Shewmaker PL, Steigerwalt AG, Morey RE, Carvalho MG, Elliott JA et al. Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol 2004;54:1505–1510 [CrossRef][PubMed]
    [Google Scholar]
  9. Lawson PA, Falsen E, Cotta MA, Whitehead TR. Vagococcus elongatus sp. nov., isolated from a swine-manure storage pit. Int J Syst Evol Microbiol 2007;57:751–754 [CrossRef][PubMed]
    [Google Scholar]
  10. Jaffrès E, Prévost H, Rossero A, Joffraud JJ, Dousset X. Vagococcus penaei sp. nov., isolated from spoilage microbiota of cooked shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 2010;60:2159–2164 [CrossRef][PubMed]
    [Google Scholar]
  11. Wang L, Cui YS, Kwon CS, Lee ST, Lee JS et al. Vagococcus acidifermentans sp. nov., isolated from an acidogenic fermentation bioreactor. Int J Syst Evol Microbiol 2011;61:1123–1126 [CrossRef][PubMed]
    [Google Scholar]
  12. Killer J, Švec P, Sedlácek I, Cernohlávková J, Benada O et al. Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2014;64:731–737 [CrossRef][PubMed]
    [Google Scholar]
  13. Sundararaman A, Srinivasan S, Lee SS. Vagococcus humatus sp. nov., isolated from soil beneath a decomposing pig carcass. Int J Syst Evol Microbiol 2017;67:330–335 [CrossRef][PubMed]
    [Google Scholar]
  14. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017;67:3398–3402 [CrossRef][PubMed]
    [Google Scholar]
  15. Wullschleger S, Jans S, Seifert C, Baumgartner S, Lacroix C et al. Vagococcus teuberi sp. nov., isolated from the Malian artisanal sour milk fènè. Syst Appl Microbiol 2018;4:65–72
    [Google Scholar]
  16. Shewmaker PL, Whitney AM, Gulvik CA, Lipman NS. Description of Streptococcus azizii sp. nov., isolated from naïve weanling mice. Int J Syst Evol Microbiol 2017;67:5032–5037 [CrossRef][PubMed]
    [Google Scholar]
  17. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  19. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 Epub 2007 Apr 22 [CrossRef][PubMed]
    [Google Scholar]
  20. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009;25:1422–1423 [CrossRef][PubMed]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  23. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  26. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  27. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  28. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  29. Drancourt M, Roux V, Fournier PE, Raoult D. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia and Granulicatella. J Clin Microbiol 2004;42:497–504 [CrossRef][PubMed]
    [Google Scholar]
  30. Sistek V, Maheux AF, Boissinot M, Bernard KA, Cantin P et al. Enterococcus ureasiticus sp. nov. and Enterococcus quebecensis sp. nov., isolated from water. Int J Syst Evol Microbiol 2012;62:1314–1320 [CrossRef][PubMed]
    [Google Scholar]
  31. Glazunova OO, Raoult D, Roux V. Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 2009;59:2317–2322 [CrossRef][PubMed]
    [Google Scholar]
  32. McLaughlin RW, Shewmaker PL, Whitney AM, Humrighouse BW, Lauer AC et al. Enterococcus crotali sp. nov., isolated from faecal material of a timber rattlesnake. Int J Syst Evol Microbiol 2017;67:1984–1989 [CrossRef][PubMed]
    [Google Scholar]
  33. Brousseau R, Hill JE, Préfontaine G, Goh SH, Harel J et al. Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Appl Environ Microbiol 2001;67:4828–4833 [CrossRef][PubMed]
    [Google Scholar]
  34. Sakamoto M, Ohkuma M. Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J Med Microbiol 2010;59:1293–1302 [CrossRef][PubMed]
    [Google Scholar]
  35. Kim M, Park SC, Baek I, Chun J. Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. Syst Appl Microbiol 2015;38:79–83 [CrossRef][PubMed]
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  37. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002;30:1575–1584 [CrossRef][PubMed]
    [Google Scholar]
  38. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018;34:2490–2492 [CrossRef][PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  40. Almeida M, Hébert A, Abraham AL, Rasmussen S, Monnet C et al. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products. BMC Genomics 2014;15:1101 [CrossRef][PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  42. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  43. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  44. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  45. Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 1995;8:479–495 [CrossRef][PubMed]
    [Google Scholar]
  46. Bastin B, Bird P, Benzinger MJ, Crowley E, Agin J et al. Confirmation and identification of Salmonella spp., Cronobacter spp., and other gram-negative organisms by the Bruker MALDI biotyper method: collaborative study, First Action 2017.09. J AOAC Int 2018;101:1593–1609 [CrossRef]
    [Google Scholar]
  47. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 2001
    [Google Scholar]
  48. Stevens MJ, Inglin RC, Meile L. Complete and assembled genome sequence of Vagococcus teuberi DSM 21459T, a novel species isolated from fermented cow milk in Mali. Genome Announc 2017;5:e01514-16 [CrossRef][PubMed]
    [Google Scholar]
  49. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003459
Loading
/content/journal/ijsem/10.1099/ijsem.0.003459
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error