1887

Abstract

A Gram-reaction-positive, non-spore-forming, rod-shaped bacterium, strain C1-50, was isolated from a natural cave in Jeju, Republic of Korea by using the serial dilution plating method. Results of phylogenetic analysis using 16S rRNA gene sequences showed that strain C1-50 belonged to the family Micrococcaceae but had the highest sequence similarity to Arthrobacter halodurans JSM 078085 (96.18 %) and Arthrobacter globiformis DSM 20124 (96.04 %). The 16S rRNA gene sequence similarities between strain C1-50 and other members of the family were lower than 96.0 %. The cell-wall peptidoglycan type was A3α with an l-Lys-l-Ala2. Whole-cell sugars consisted largely of glucose and galactose. The predominant menaquinone was MK-9(H2) with smaller components of MK-7(H2) and MK-8(H2). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified glycolipid. The cellular fatty acids consisted of saturated, unsaturated, anteiso-branched and iso-branched components. The G+C content of genomic DNA was 68.8 mol% (draft genome sequence). On the basis of morphological and chemotaxonomic differences and distinct phylogenetic clustering, it was concluded that the organism represents a novel species of a new genus in the family Micrococcaceae , for which the name Specibacter cremeus gen. nov., sp. nov. is proposed. The type strain is C1-50 (=KCTC 39557=DSM 100066).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003392
2019-04-16
2019-08-19
Loading full text...

Full text loading...

References

  1. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  2. Yassin AF, Hupfer H, Siering C, Klenk HP, Schumann P. Auritidibacter ignavus gen. nov., sp. nov., of the family Micrococcaceae isolated from an ear swab of a man with otitis externa, transfer of the members of the family Yaniellaceae Li et al. 2008 to the family Micrococcaceae and emended description of the suborder Micrococcineae. Int J Syst Evol Microbiol 2011;61:223–230 [CrossRef][PubMed]
    [Google Scholar]
  3. Cao YR, Jiang Y, Jin RX, Han L, He WX et al. Enteractinococcus coprophilus gen. nov., sp. nov., of the family Micrococcaceae, isolated from Panthera tigris amoyensis faeces, and transfer of Yaniella fodinae Dhanjal et al. 2011 to the genus Enteractinococcus as Enteractinococcus fodinae comb. nov. Int J Syst Evol Microbiol 2012;62:2710–2716 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhou Y, Wei W, Wang X, Lai R. Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int J Syst Evol Microbiol 2009;59:259–263 [CrossRef][PubMed]
    [Google Scholar]
  5. Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C et al. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 2013;63:2463–2471 [CrossRef][PubMed]
    [Google Scholar]
  6. Li WJ, Zhi XY, Euzéby JP. Proposal of Yaniellaceae fam. nov., Yaniella gen. nov. and Sinobaca gen. nov. as replacements for the illegitimate prokaryotic names Yaniaceae Li et al. 2005, Yania Li et al. 2004, emend Li et al. 2005, and Sinococcus Li et al. 2006, respectively. Int J Syst Evol Microbiol 2008;58:525–527 [CrossRef][PubMed]
    [Google Scholar]
  7. Lo N, Lee SH, Jin HM, Jung JY, Schumann P et al. Garicola koreensis gen. nov., sp. nov., isolated from saeu-jeot, traditional Korean fermented shrimp. Int J Syst Evol Microbiol 2015;65:1015–1021 [CrossRef][PubMed]
    [Google Scholar]
  8. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016;66:9–37 [CrossRef][PubMed]
    [Google Scholar]
  9. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  10. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1980
    [Google Scholar]
  11. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;24:4876–4882
    [Google Scholar]
  16. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  18. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ et al. Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation; 1985
    [Google Scholar]
  19. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  20. Collins MD. Anaysis of isoprenoid quinones. Methods Microbiol 1985;18:329–366
    [Google Scholar]
  21. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.173–199
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  23. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  24. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  25. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129
    [Google Scholar]
  26. Saddler GS, Tavecchia P, Lociuro S, Zanol M, Colombo L et al. Analysis of madurose and other actinomycete whole cell sugars by gas chromatography. J Microbiol Methods 1991;14:185–191 [CrossRef]
    [Google Scholar]
  27. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  28. Busse H-J. Family Micrococcaceae Pribham 1929 36AL emend. Stackebrandt, Rainey and Ward-Rainey 1997, 479. In Goodfellow M, Kämpfer P, Hussse H-J, Trujilo M, Suzuki K-I et al. (editors) Bergy’s Manual of Systematic Bacteriologyvol. 5 NewYork: Springer; pp.571–666
    [Google Scholar]
  29. Chen Y-G, Tang S-K, Zhang Y-Q, Li Z-Y YL-B et al. Arthrobacter halodurans sp. nov., a new halotolerant bacteriaum isolated from sea water. Antonie van Leeuvenhoek 2009;39:159–167
    [Google Scholar]
  30. Govender L, Naidoo L, Setati ME. Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol 2013;63:41–46 [CrossRef][PubMed]
    [Google Scholar]
  31. Huang Y, Zhao N, He L, Wang L, Liu Z et al. Arthrobacter scleromae sp. nov. isolated from human clinical specimens. J Clin Microbiol 2005;43:1451–1455 [CrossRef][PubMed]
    [Google Scholar]
  32. Kallimanis A, Kavakiotis K, Perisynakis A, Spröer C, Pukall R et al. Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3. Int J Syst Evol Microbiol 2009;59:275–279 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhou Y, Chen X, Zhang Y, Wang W, Xu J. Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. Int J Syst Evol Microbiol 2012;62:764–769 [CrossRef][PubMed]
    [Google Scholar]
  34. Chen YG, Chen J, Chen QH, Tang SK, Zhang YQ et al. Yaniella soli sp. nov., a new actinobacterium isolated from non-saline forest soil in China. Antonie van Leeuwenhoek 2010;98:395–401 [CrossRef][PubMed]
    [Google Scholar]
  35. Hamada M, Shibata C, Tamura T, Suzuki K. Zhihengliuella flava sp. nov., an actinobacterium isolated from sea sediment, and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2013;63:4760–4764 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003392
Loading
/content/journal/ijsem/10.1099/ijsem.0.003392
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error