1887

Abstract

Five strains, NUNU 16637, NYNU 16645, NYNU 1673, NYNU 1680 and NYNU 1689, of a novel ascomycetous yeast were isolated from the Xishuangbanna tropical rainforest, Yunnan Province, PR China. The five strains shared identical sequences in both of the D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions. Sequence analysis showed that they represent undescribed yeast species belonging to the genus Wickerhamomyces. They differed from their closest known species, Wickerhamomyces xylosivorus NBRC 111553, by 3.4 % sequence divergence (14 substitutions and six gaps out of 584 bp) in the D1/D2 domains and by 9.6 % sequence divergence (28 substitutions and 24 gaps over 543 bp) in the ITS regions, respectively. The five strains of novel species reproduced asexually; no sexual reproduction could be found. In contrast to W. xylosivorus, the novel yeast species were able to assimilate l-arabinose, inulin, soluble starch, d-mannitol and citrate, and unable to assimilate trehalose, raffinose, 5-keto-d-gluconate, d-gluconate, ethanol, ethylamine and cadaverine. Growth was observed at 35 °C. The name Wickerhamomyces menglaensis f.a., sp. nov. is proposed to accommodate these strains, with NYNU 1673 as the holotype.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003350
2019-03-20
2019-08-22
Loading full text...

Full text loading...

References

  1. Kurtzman CP, Robnett CJ, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 2008;8:939–954 [CrossRef][PubMed]
    [Google Scholar]
  2. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts – A Taxonomic Study, 5th ed.vol. 1 Amsterdam: Elsevier; 2011; pp.87–110
    [Google Scholar]
  3. Limtong S, Nitiyon S, Kaewwichian R, Jindamorakot S, Am-In S et al. Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. Int J Syst Evol Microbiol 2012;62:2786–2792 [CrossRef][PubMed]
    [Google Scholar]
  4. James SA, Barriga EJ, Barahona PP, Harrington TC, Lee CF et al. Wickerhamomyces arborarius f.a., sp. nov., an ascomycetous yeast species found in arboreal habitats on three different continents. Int J Syst Evol Microbiol 2014;64:1057–1061 [CrossRef][PubMed]
    [Google Scholar]
  5. Groenewald M, Robert V, Smith MT. Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. Int J Syst Evol Microbiol 2011;61:2015–2022 [CrossRef][PubMed]
    [Google Scholar]
  6. Limtong S, Yongmanitchai W, Kawasaki H, Fujiyama K. Wickerhamomyces edaphicus sp. nov., and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res 2009;9:504–510 [CrossRef][PubMed]
    [Google Scholar]
  7. Hui FL, Chen L, Chu XY, Niu QH, Ke T. Wickerhamomyces mori sp. nov., an anamorphic yeast species found in the guts of wood-boring insect larvae. Int J Syst Evol Microbiol 2013;63:1174–1178 [CrossRef][PubMed]
    [Google Scholar]
  8. Nagatsuka Y, Kawasaki H, Seki T. Pichia myanmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar. Int J Syst Evol Microbiol 2005;55:1379–1382 [CrossRef][PubMed]
    [Google Scholar]
  9. Shin KS, Bae KS, Lee KH, Park DS, Kwon GS et al. Wickerhamomyces ochangensis sp. nov., an ascomycetous yeast isolated from the soil of a potato field. Int J Syst Evol Microbiol 2011;61:2543–2546 [CrossRef][PubMed]
    [Google Scholar]
  10. Nasr S, Nguyen HDT, Soudi MR, Shahzadeh Fazeli SA, Sipiczki M. Wickerhamomyces orientalis f.a., sp. nov.: an ascomycetous yeast species belonging to the Wickerhamomyces clade. Int J Syst Evol Microbiol 2016;66:2534–2539 [CrossRef][PubMed]
    [Google Scholar]
  11. de García V, Brizzio S, Libkind D, Rosa CA, van Broock M. Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. Int J Syst Evol Microbiol 2010;60:1693–1696 [CrossRef][PubMed]
    [Google Scholar]
  12. Rosa CA, Morais PB, Lachance MA, Santos RO, Melo WG et al. Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. Int J Syst Evol Microbiol 2009;59:1232–1236 [CrossRef][PubMed]
    [Google Scholar]
  13. Ninomiya S, Mikata K, Kajimura H, Kawasaki H. Two novel ascomycetous yeast species, Wickerhamomyces scolytoplatypi sp. nov. and Cyberlindnera xylebori sp. nov., isolated from ambrosia beetle galleries. Int J Syst Evol Microbiol 2013;63:2706–2711 [CrossRef][PubMed]
    [Google Scholar]
  14. Kaewwichian R, Kawasaki H, Limtong S. Wickerhamomyces siamensis sp. nov., a novel yeast species isolated from the phylloplane in Thailand. Int J Syst Evol Microbiol 2013;63:1568–1573 [CrossRef][PubMed]
    [Google Scholar]
  15. Masiulionis VE, Pagnocca FC. Wickerhamomyces spegazzinii sp. nov., an ascomycetous yeast isolated from the fungus garden of Acromyrmex lundii nest (Hymenoptera: Formicidae). Int J Syst Evol Microbiol 2016;66:2141–2145 [CrossRef][PubMed]
    [Google Scholar]
  16. Francesca N, Carvalho C, Almeida PM, Sannino C, Settanni L et al. Wickerhamomyces sylviae f.a., sp. nov., an ascomycetous yeast species isolated from migratory birds. Int J Syst Evol Microbiol 2013;63:4824–4830 [CrossRef][PubMed]
    [Google Scholar]
  17. Nakase T, Jindamorakot S, Am-In S, Ninomiya S, Kawasaki H. Wickerhamomyces tratensis sp. nov. and Candida namnaoensis sp. nov., two novel ascomycetous yeast species in the Wickerhamomyces clade found in Thailand. J Gen Appl Microbiol 2012;58:145–152[PubMed]
    [Google Scholar]
  18. Kobayashi R, Kanti A, Kawasaki H. Three novel species of d-xylose-assimilating yeasts, Barnettozyma xylosiphila sp. nov., Barnettozyma xylosica sp. nov. and Wickerhamomyces xylosivorus f.a., sp. nov. Int J Syst Evol Microbiol 2017;67:3971–3976 [CrossRef][PubMed]
    [Google Scholar]
  19. Zheng J, Lu YF, Liu XJ, Hui FL. Cyberlindnera xishuangbannaensis f.a., sp. nov., a yeast isolated from rotting wood. Int J Syst Evol Microbiol 2017;67:5051–5055 [CrossRef][PubMed]
    [Google Scholar]
  20. Zheng J, Liu KF, Liu XJ, Zhang L, Hui FL et al. Deakozyma yunnanensis sp. nov., a novel yeast species isolated from rotten wood. Int J Syst Evol Microbiol 2017;67:2436–2439 [CrossRef][PubMed]
    [Google Scholar]
  21. Xi ZW, Huang LN, Li Y, Hui FL. Vanrija jinghongensis sp. nov., an asexual basidiomycetous yeast from rotting wood. Int J Syst Evol Microbiol 2019;69:105–108 [CrossRef][PubMed]
    [Google Scholar]
  22. Hui FL, Chen L, Li ZH, Niu QH, Ke T. Metschnikowia henanensis sp. nov., a new anamorphic yeast species isolated from rotten wood in China. Antonie van Leeuwenhoek 2013;103:899–904 [CrossRef][PubMed]
    [Google Scholar]
  23. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (editors) PCR Protocols: a Guide to Methods and Applications New York: Academic Press; 1990; pp.315–322
    [Google Scholar]
  24. O’Donnell K. Fusarium and its near relatives. In Reynolds DR, Taylor JW. (editors) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics Wallingford, UK: CAB International; 1993; pp.225–233
    [Google Scholar]
  25. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 2016;85:91–105 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003350
Loading
/content/journal/ijsem/10.1099/ijsem.0.003350
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error