1887

Abstract

A Gram-stain-negative, motile, aerobic, rod-shaped bacterium with flagella, designated ZX-21, was isolated from surface seawater of the East Sea in Zhoushan, China. Growth of strain ZX-21T was observed at 10-–35  o°C (optimum, 30 °C), at pH 6.0–8.5 (pHoptimum 6.5–7.0) and in the presence of 0.5–8 % (w/v) NaCl (optimum 3–4 %). It was positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZX-21T constituted an independent lineage within the family Spongiibacteraceae and was most closely related to Zhongshania guokunii (96.83 %). Strain ZX-21T contained ubiquinone-8 (Q-8) as the sole isoprenoid quinone and summed feature 3 (C16 : 1ω77c and/or C16 : 1ω66c), summed feature 8 (C18 : 1ω77c and/or C18 : 1ω66c) and C16 : 0 as the major fatty acids. Phosphatidylglycerol (), phosphatidylethanolamine (), diphosphatidylglycerol () and an unidentified glycolipid were the major cellular polar lipids. The DNA G+C content was 49.1 mol%. Based on itsthe morphological, physiological and chemotaxonomic characteristics, strain ZX-21Tis described as a novel species in a novel genus for whichwith the name Marortus luteolus gen. nov., sp. nov. (type strain ZX-21T = MCCC 1K03431T=KCTC 62160T) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003348
2019-03-20
2019-09-20
Loading full text...

Full text loading...

References

  1. Li HJ, Zhang XY, Chen CX, Zhang YJ, Gao ZM et al. Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov., gammaproteobacteria respectively isolated from coastal attached (fast) ice and surface seawater of the Antarctic. Int J Syst Evol Microbiol 2011;61:2052–2057 [CrossRef][PubMed]
    [Google Scholar]
  2. Lo N, Kang HJ, Jeon CO. Zhongshania aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. Int J Syst Evol Microbiol 2014;64:3768–3774 [CrossRef][PubMed]
    [Google Scholar]
  3. Jang GI, Hwang CY, Choi HG, Kang SH, Cho BC. Description of Spongiibacter borealis sp. nov., isolated from Arctic seawater, and reclassification of Melitea salexigens Urios et al. 2008 as a later heterotypic synonym of Spongiibacter marinus Graeber et al. 2008 with emended descriptions of the genus Spongiibacter and Spongiibacter marinus. Int J Syst Evol Microbiol 2011;61:2895–2900 [CrossRef][PubMed]
    [Google Scholar]
  4. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014;64:2512–2516 [CrossRef][PubMed]
    [Google Scholar]
  5. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  6. Sun C, Pan J, Zhang XQ, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek 2015;108:291–299 [CrossRef][PubMed]
    [Google Scholar]
  7. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  8. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematic. Method Microbiol 1987;19:161–207
    [Google Scholar]
  9. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press;; 2007; pp.330–393
    [Google Scholar]
  10. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  11. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ, Yz Q et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014;64:2079–2083 [CrossRef][PubMed]
    [Google Scholar]
  12. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  15. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  24. Graeber I, Kaesler I, Borchert MS, Dieckmann R, Pape T et al. Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. Int J Syst Evol Microbiol 2008;58:585–590 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003348
Loading
/content/journal/ijsem/10.1099/ijsem.0.003348
Loading

Data & Media loading...

Supplementary data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error