1887

Abstract

A novel Gram-stain-negative, motile, rod-shaped (0.4–0.5×1.0–2.0 µm) strain with one polar flagellum, designated SY39, was isolated from seawater in Sanya, China. Strain SY39 was able to grow at 15–40 °C (optimum, 35–37 °C), pH 6.5–8.5 (pH 8.0) and 0.5–6.0 % (w/v) NaCl (3.5 %). Chemotaxonomic analysis showed that the isoprenoid quinones were Q-8 (88.6 %) and Q-7 (11.4 %). The dominant fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The polar lipids of strain SY39 consisted of diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unknown phosphoglycolipid, one unknown glycolipid and two unknown aminophosphoglycolipids. The DNA G+C content of the genomic DNA was 66.5 mol%. The phylogenetic analysis of 16S rRNA gene sequences showed that strain SY39 belongs to the genus Azoarcus with similarity ranging from 92.3 to 95.2 %. Based on the phenotypic, chemotaxonomic and phylogenetic features, strain SY39 is concluded to represent a novel species of the genus Azoarcus , for which the name Azoarcus pumilus sp. nov. is proposed. The type strain is SY39 (=KCTC 62157=MCCC 1K03430).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003341
2019-03-18
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1459.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003341&mimeType=html&fmt=ahah

References

  1. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 1993; 43:574–584 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Song B, Haggblom MM, Zhou J, Tiedje JM, Palleroni NJ. Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 1999; 49:1129–1140 [View Article][PubMed]
    [Google Scholar]
  4. Chen M-H, Sheu S-Y, James EK, Young C-C, Chen W-M. Azoarcus olearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2013; 63:3755–3761 [View Article][PubMed]
    [Google Scholar]
  5. Springer N, Ludwig W, Philipp B, Schink B. Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 1998; 48:953–956 [View Article][PubMed]
    [Google Scholar]
  6. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 2002; 178:26–35 [View Article][PubMed]
    [Google Scholar]
  7. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 1995; 45:500–506 [View Article][PubMed]
    [Google Scholar]
  8. Reinhold-Hurek B, Hurek T. The genera Azoarcus, Azovibrio, Azospira and Azonexus. The Prokaryotes Springer; 2006 pp. 873–891
    [Google Scholar]
  9. Pan J, Sun C, Zhang X-Q, Huo Y-Y, Zhu X-F et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014; 64:2512–2516 [View Article][PubMed]
    [Google Scholar]
  10. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  11. Fu GY, Yu XY, Zhang CY, Zhao Z, Wu D et al. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017; 67:2739–2745 [View Article][PubMed]
    [Google Scholar]
  12. Sun C, Pan J, Zhang X-Q, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek 2015; 108:291–299 [View Article][PubMed]
    [Google Scholar]
  13. Zhang X-Q, Sun C, Wang C-S, Zhang X, Zhou X et al. Sinimarinibacterium flocculans gen. nov., sp. nov., a gammaproteobacterium from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:3541–3546 [View Article][PubMed]
    [Google Scholar]
  14. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  15. Lányi B. 1 classical and rapid identification methods for medically important bacteria. In Colwell RR, Grigorova R. (editors) Methods in Microbiology Academic Press; 1988 pp. 1–67
    [Google Scholar]
  16. Xu L, Wu YH, Jian SL, Wang CS, Wu M et al. Pseudohongiellanitratireducens sp. nov., isolated from seawater, and emended description of the genus Pseudohongiella. Int J Syst Evol Microbiol 2016; 66:5155–5160 [View Article][PubMed]
    [Google Scholar]
  17. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  18. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. In Colwell RR, Grigorova R. (editors) Methods in Microbiology Academic Press; 1988 pp. 161–207
    [Google Scholar]
  19. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  25. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  26. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  27. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP et al. A whole-genome assembly of Drosophila. Science 2000; 287:2196–2204 [View Article][PubMed]
    [Google Scholar]
  28. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+ cytosine of DNA. J Chromatogr A 1989; 479:297–306 [View Article][PubMed]
    [Google Scholar]
  29. Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 1995; 45:327–333 [View Article][PubMed]
    [Google Scholar]
  30. Lee DJ, Wong BT, Adav SS. Azoarcus taiwanensis sp. nov., a denitrifying species isolated from a hot spring. Appl Microbiol Biotechnol 2014; 98:1301–1307 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003341
Loading
/content/journal/ijsem/10.1099/ijsem.0.003341
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error