1887

Abstract

A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5–0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20–37 °C (optimum, 30 °C), pH 5.5–8.0 (pH 6.5–7.0), and 0–30 g l NaCl (5 g l NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~10 cells ml, respectively. Strain MO-CFX2 grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C (47.9 %) and C (36.9 %), and unsaturated Cω9c (6.0 %) and Cω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2 shares a notably low sequence identity with its closest relatives, which were GNS-1 and SW7 (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name gen. nov., sp. nov. for strain MO-CFX2 (=KCTC 15625, =JCM 32065). In addition, we also propose the associated family and order as fam. nov. and ord. nov., respectively.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award JP1610845)
  • Japan Society for the Promotion of Science (Award 15H02419)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003291
2019-02-18
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/4/1185.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003291&mimeType=html&fmt=ahah

References

  1. Yamada T, Sekiguchi Y. Cultivation of uncultured chloroflexi subphyla: significance and ecophysiology of formerly uncultured chloroflexi 'subphylum i' with natural and biotechnological relevance. Microbes Environ 2009; 24:205–216 [View Article][PubMed]
    [Google Scholar]
  2. Nunoura T, Hirai M, Miyazaki M, Kazama H, Makita H et al. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ 2013; 28:228–235 [View Article][PubMed]
    [Google Scholar]
  3. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H et al. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 2003; 53:1843–1851 [View Article][PubMed]
    [Google Scholar]
  4. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi . Int J Syst Evol Microbiol 2006; 56:1331–1340 [View Article][PubMed]
    [Google Scholar]
  5. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S et al. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 2007; 57:2299–2306 [View Article][PubMed]
    [Google Scholar]
  6. Sun L, Toyonaga M, Ohashi A, Matsuura N, Tourlousse DM et al. Isolation and characterization of Flexilinea flocculi gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi . Int J Syst Evol Microbiol 2016; 66:988–996 [View Article][PubMed]
    [Google Scholar]
  7. Grégoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F et al. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum “Chloroflexi”, isolated from a deep hot aquifer in the Aquitaine Basin. Syst Appl Microbiol 2011; 34:494–497 [View Article]
    [Google Scholar]
  8. Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae . Int J Syst Evol Microbiol 2013; 63:86–92 [View Article][PubMed]
    [Google Scholar]
  9. Imachi H, Sakai S, Lipp JS, Miyazaki M, Saito Y et al. Pelolinea submarina gen. nov., sp. nov., an anaerobic, filamentous bacterium of the phylum Chloroflexi isolated from subseafloor sediment. Int J Syst Evol Microbiol 2014; 64:812–818 [View Article][PubMed]
    [Google Scholar]
  10. Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 2015; 9:1710–1722 [View Article][PubMed]
    [Google Scholar]
  11. Sewell HL, Kaster AK, Spormann AM. Homoacetogenesis in deep-sea chloroflexi, as inferred by single-cell genomics, provides a link to reductive dehalogenation in terrestrial Dehalococcoidetes . MBIO 2017; 8:e0202217 [View Article][PubMed]
    [Google Scholar]
  12. Fullerton H, Moyer CL. Comparative single-cell genomics of chloroflexi from the okinawa trough deep-subsurface biosphere. Appl Environ Microbiol 2016; 82:3000–3008 [View Article][PubMed]
    [Google Scholar]
  13. Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 2011; 5:1913–1925 [View Article][PubMed]
    [Google Scholar]
  14. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 2006; 72:3685–3695 [View Article][PubMed]
    [Google Scholar]
  15. Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 2013; 7:50–60 [View Article][PubMed]
    [Google Scholar]
  16. Chen CL, Macarie H, Ramirez I, Olmos A, Ong SL et al. Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology 2004; 150:3429–3440 [View Article][PubMed]
    [Google Scholar]
  17. Liu J, Wu W, Chen C, Sun F, Chen Y. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl Microbiol Biotechnol 2011; 91:1659–1675 [View Article][PubMed]
    [Google Scholar]
  18. Oba Y, Futagami T, Amachi S. Enrichment of a microbial consortium capable of reductive deiodination of 2,4,6-triiodophenol. J Biosci Bioeng 2014; 117:310–317 [View Article][PubMed]
    [Google Scholar]
  19. Luo JH, Chen H, Hu S, Cai C, Yuan Z et al. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm. Environ Sci Technol 2018; 52:4006–4012 [View Article][PubMed]
    [Google Scholar]
  20. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990; 56:1919–1925[PubMed]
    [Google Scholar]
  21. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 1999; 22:434–444 [View Article][PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  23. Miyashita A, Mochimaru H, Kazama H, Ohashi A, Yamaguchi T et al. Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS Microbiol Lett 2009; 297:31–37 [View Article][PubMed]
    [Google Scholar]
  24. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  25. Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods 2011; 84:12–18 [View Article][PubMed]
    [Google Scholar]
  26. Murakami S, Fujishima K, Tomita M, Kanai A. Metatranscriptomic analysis of microbes in an Oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation. Appl Environ Microbiol 2012; 78:1015–1022 [View Article][PubMed]
    [Google Scholar]
  27. Aoki M, Ehara M, Saito Y, Yoshioka H, Miyazaki M et al. A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One 2014; 9:e105356 [View Article][PubMed]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  30. The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45:D158–D169 [View Article][PubMed]
    [Google Scholar]
  31. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article][PubMed]
    [Google Scholar]
  32. Haft DH. The TIGRFAMs database of protein families. Nucleic Acids Res 2003; 31:371–373 [View Article]
    [Google Scholar]
  33. Yamada M, Zhang H, Hanada S, Nagashima KV, Shimada K et al. Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii . J Bacteriol 2005; 187:1702–1709 [View Article][PubMed]
    [Google Scholar]
  34. Miyazaki M, Sakai S, Ritalahti KM, Saito Y, Yamanaka Y et al. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta . Int J Syst Evol Microbiol 2014; 64:4147–4154 [View Article][PubMed]
    [Google Scholar]
  35. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 2005; 7:1442–1450 [View Article][PubMed]
    [Google Scholar]
  36. Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977; 41:100–180[PubMed]
    [Google Scholar]
  37. Harmsen HJ, van Kuijk BL, Plugge CM, Akkermans AD, de Vos WM et al. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 1998; 48:1383–1387 [View Article][PubMed]
    [Google Scholar]
  38. Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A et al. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 2002; 52:1729–1735
    [Google Scholar]
  39. MIDI Sherlock, Microbial Identification System, Operating Manual, version 3.0 Newark, DE: MIDI, Inc; 1999
    [Google Scholar]
  40. Christie WW. Structural analysis of fatty acids. In Christie WW. (editor) Advances in Lipid Methodology vol. 4 Dundee: Oily Press; 1997 pp. 119–169
    [Google Scholar]
  41. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  42. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  44. Swofford D.L. PAUP*: phylogenetic analysis using parsimony, 4.0version 4.0b10. 2003
    [Google Scholar]
  45. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  46. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article][PubMed]
    [Google Scholar]
  47. Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014; 2:e243 [View Article][PubMed]
    [Google Scholar]
  48. Matsuura N, Tourlousse DM, Sun L, Toyonaga M, Kuroda K et al. Draft genome sequence of Anaerolineae strain TC1, a novel isolate from a Methanogenic wastewater treatment system. Genome Announc 2015; 3:e01104–15–2 [View Article][PubMed]
    [Google Scholar]
  49. Nakahara N, Takaki Y, Ogawara M, Yamaguchi T, Takai K et al. Complete genome sequence of Pelolinea submarina MO-CFX1T within the phylum Chloroflexi, isolated from subseafloor sediment. Mar Genomics 2018 [View Article]
    [Google Scholar]
  50. Matsuura N, Tourlousse DM, Ohashi A, Hugenholtz P, Sekiguchi Y. Draft genome sequences of Anaerolinea thermolimosa IMO-1, Bellilinea caldifistulae GOMI-1, Leptolinea tardivitalis YMTK-2, Levilinea saccharolytica KIBI-1, Longilinea arvoryzae KOME-1, previously described as members of the class Anaerolineae (Chloroflexi). Genome Announc 2015; 3:e00975–15–2 [View Article]
    [Google Scholar]
  51. Hemp J, Ward LM, Pace LA, Fischer WW. Draft genome Sequence of Ornatilinea apprima P3M-1, an anaerobic member of the Chloroflexi class Anaerolineae . Genome Announc 2015; 3:e01353–15–1 [View Article][PubMed]
    [Google Scholar]
  52. Pace LA, Hemp J, Ward LM, Fischer WW. Draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic facultative anaerobe from the Chloroflexi class Anaerolineae . Genome Announc 2015; 3:e01354–15–1 [View Article][PubMed]
    [Google Scholar]
  53. Mcilroy SJ, Kirkegaard RH, Dueholm MS, Fernando E, Karst SM et al. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front Microbiol 2017; 8:1134 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003291
Loading
/content/journal/ijsem/10.1099/ijsem.0.003291
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error