1887

Abstract

Assessment of the bacterial diversity associated with a decaying fern, Athyrium wallichianum Ching, revealed the presence of a novel bacterial strain named M46. It was Gram-stain-negative, rod-shaped, non-motile and aerobic with cellulose and xylan degradation abilities. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M46 was affiliated to the genus Sphingobacterium , exhibiting the highest sequence similarity of 97.9 % to Sphingobacterium ginsenosidimutans THG 07, Sphingobacterium canadense CR11 and Sphingobacterium detergens 6.2 S. Multilocus sequence analysis (MLSA) based on concatenated sequences of the rpoB, cpn60 and 16S rRNA genes showed that strain M46 clustered together with S. canadense CR11. The genome of strain M46 had a G+C content of 40.6 mol% and chromosome of 6 853 865 bp. Average nucleotide identity (ANI) between strain M46 and S. detergens 6.2 S and S. siyangense SY1 was 85.1 and 78.1 %, respectively. DNA–DNA relatedness values among strain M46 and other closely related Sphingobacterium species were <70 %. ANI and DNA–DNA relatedness findings strongly supported M46 as a putative novel strain of Sphingobacterium . The predominant fatty acids of strain M46 were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1 ω6c) and iso-C17 : 0 3-OH, and MK-7 was the dominant isoprenoid quinone. The polar lipid profile of strain M46 contained phosphatidylethanolamine as the dominant component, while minor amounts of phosphoglycolipid, one unidentified aminophospholipid, two unidentified phospholipids and four unidentified lipids were also detected. Based on 16S rRNA gene sequence similarities, MLSA results, genomic characteristics, and phenotypic and biochemotaxonomic analyses, strain M46 is considered to represent a novel species in the genus Sphingobacterium , for which the name Sphingobacterium athyrii sp. nov. is proposed. The type strain is M46 (=CGMCC 1.13466=JCM 32543).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003231
2019-01-16
2019-10-20
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N et al. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. no., glucose nonfermenting gram-negative rods in CDC group IIK-2 and group IIB. Int J Syst Bacteriol 1983;33:580–598
    [Google Scholar]
  2. Chaudhary DK, Kim J. Sphingobacterium terrae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018
    [Google Scholar]
  3. Fu YS, Hussain F, Habib N, Khan IU, Chu X et al. Sphingobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017;67:2284–2288
    [Google Scholar]
  4. Lee Y, Jin HM, Jung HS, Jeon CO. Sphingobacterium humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017;67:4632–4638 [CrossRef][PubMed]
    [Google Scholar]
  5. Marqués AM, Burgos-Díaz C, Aranda FJ, Teruel JA, Manresa À et al. Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2012;62:3036–3041 [CrossRef][PubMed]
    [Google Scholar]
  6. Xu L, Sun JQ, Wang LJ, Gao ZW, Sun LZ et al. Sphingobacterium alkalisoli sp. nov., isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2017;67:1943–1948 [CrossRef][PubMed]
    [Google Scholar]
  7. Du J, Singh H, Won K, Yang JE, Jin FX et al. Sphingobacterium mucilaginosum sp. nov., isolated from rhizosphere soil of a rose. Int J Syst Evol Microbiol 2015;65:2949–2954 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu H, Zhang J, Chen D, Cao L, Lu P et al. Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. Int J Syst Evol Microbiol 2013;63:4515–4518 [CrossRef][PubMed]
    [Google Scholar]
  9. Son HM, Yang JE, Kook MC, Shin HS, Park SY et al. Sphingobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J Gen Appl Microbiol 2013;59:345–352 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhou XK, Li QQ, Mo MH, Zhang YG, Dong LM et al. Sphingobacterium tabacisoli sp. nov., isolated from a tobacco field soil sample. Int J Syst Evol Microbiol 2017;67:4808–4813 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 2013;63:755–760 [CrossRef][PubMed]
    [Google Scholar]
  12. Li Y, Xu GT, Chang JP, Guo LM, Yang XQ et al. Sphingobacterium corticis sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2017;67:3860–3864 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu J, Yang LL, Xu CK, Xi JQ, Yang FX et al. Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 2012;62:1809–1813 [CrossRef][PubMed]
    [Google Scholar]
  14. Mehnaz S, Weselowski B, Lazarovits G. Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 2007;30:519–524 [CrossRef][PubMed]
    [Google Scholar]
  15. Peng S, Hong DD, Xin YB, Jun LM, Hong WG. Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 2014;64:3862–3866 [CrossRef][PubMed]
    [Google Scholar]
  16. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L et al. Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2013;63:952–958 [CrossRef][PubMed]
    [Google Scholar]
  17. Sun LN, Zhang J, Chen Q, He J, Li SP. Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2013;63:2260–2264 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhang J, Zheng JW, Cho BC, Hwang CY, Fang C et al. Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. Int J Syst Evol Microbiol 2012;62:683–687 [CrossRef][PubMed]
    [Google Scholar]
  19. Reina J, Borrell N, Figuerola J. Sphingobacterium multivorum isolated from a patient with cystic fibrosis. Eur J Clin Microbiol Infect Dis 1992;11:81–82 [CrossRef][PubMed]
    [Google Scholar]
  20. Carder JH. Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 1986;153:75–79 [CrossRef][PubMed]
    [Google Scholar]
  21. Suyama K, Yamamoto H, Naganawa T, Iwata T, Komada H. A plate count method for aerobic cellulose decomposers in soil by Congo red staining. Soil Science and Plant Nutrition 1993;39:361–365 [CrossRef]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Goodfellow ESM. (editor) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175 p
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  26. Kämpfer P, Busse HJ, Kleinhagauer T, McInroy JA, Glaeser SP. Sphingobacterium zeae sp. nov., an endophyte of maize. Int J Syst Evol Microbiol 2016;66:2643–2649 [CrossRef][PubMed]
    [Google Scholar]
  27. Dong X-Zc M-Y. Determination of biochemical properties. Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  28. Margalejo H, Brun Y, Messy P, Fleurette J. Antibiotic susceptibility testing by the agar diffusion method-comparative evaluation of 5 commercialized systems. Pathol Biol 1984;32:483–487
    [Google Scholar]
  29. Sasser M. Indentification of bacteria y gas chromatography of cellular fatty acids. USFCC News Lett 1990;20:1–6
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  31. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using Reverse Phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  32. Motham M, Pumas C, Peerapornpisal Y. Improvement of DNA extraction protocols for Nostochopsis spp. Chiang Mai J Sci 2014;41:557–567
    [Google Scholar]
  33. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–12 [CrossRef]
    [Google Scholar]
  34. Joshi NA, Fass JN. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files (Version 1.33)
    [Google Scholar]
  35. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  36. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  37. Hsiao W, Wan I, Jones SJ, Brinkman FS. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 2003;19:418–420 [CrossRef][PubMed]
    [Google Scholar]
  38. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  39. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  40. Saier MH, Reddy VS, Tamang DG, Västermark A. The transporter classification database. Nucleic Acids Res 2014;42:D251–D258 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018;46:W95–W101 [CrossRef][PubMed]
    [Google Scholar]
  42. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  44. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970;12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  45. Liu R, Liu H, Zhang CX, Yang SY, Liu XH et al. Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 2008;58:1458–1462 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003231
Loading
/content/journal/ijsem/10.1099/ijsem.0.003231
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error