1887

Abstract

An aerobic, Gram-stain-negative, motile and rod-shaped bacterium, designated c27j1, was isolated from a forest soil sample from the Chebaling National Nature Reserve in Guangdong Province, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain c27j1 belongs to the genus Microvirga and was most closely related to Microvirga aerophila DSM 21344 (97.7 %) and Microvirga subterranea DSM 14364 (96.7 %). The average nucleotide identity and digital DNA–DNA hybridization values based on whole genome sequences of strain c27j1 and M. aerophila DSM 21344 were 77.2 and 22.4 %, respectively. It contained ubiquinone 10 as the predominant quinone, and C19 : 0 cycloω8c and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acids. The polar lipids consisted of phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified glycolipids. The genomic DNA G+C content based on the whole genome sequence was 62.2 mol%. Phenotypic, chemotaxonomic, phylogenetic and genomic analyses suggested that strain c27j1 should represent a novel species of the genus Microvirga , for which the name Microvirga flavescens sp. nov. is proposed. The type strain is c27j1 (=GDMCC 1.1356=KCTC 62433). The description of the genus Microvirga is also emended, including the major fatty acids, genome size and DNA G+C content.

Keyword(s): ANI , forest soil and Microvirga
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003189
2019-01-23
2019-10-16
Loading full text...

Full text loading...

References

  1. Kanso S, Patel BK. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003;53:401–406 [CrossRef][PubMed]
    [Google Scholar]
  2. Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov. isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010;60:2596–2600 [CrossRef][PubMed]
    [Google Scholar]
  3. Tapase SR, Mawlankar RB, Sundharam SS, Krishnamurthi S, Dastager SG et al. Microvirga indica sp. nov., an arsenite-oxidizing Alphaproteobacterium, isolated from metal industry waste soil. Int J Syst Evol Microbiol 2017;67:3525–3531 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhang J, Song F, Xin YH, Zhang J, Fang C. Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2009;59:1997–2001 [CrossRef][PubMed]
    [Google Scholar]
  5. Dahal RH, Kim J. Microvirga soli sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2017;67:127–132 [CrossRef][PubMed]
    [Google Scholar]
  6. Caputo A, Lagier JC, Azza S, Robert C, Mouelhi D et al. Microvirga massiliensis sp. nov., the human commensal with the largest genome. Microbiologyopen 2016;5:307–322 [CrossRef][PubMed]
    [Google Scholar]
  7. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012;62:2579–2588 [CrossRef][PubMed]
    [Google Scholar]
  8. Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol 2017;67:94–100 [CrossRef][PubMed]
    [Google Scholar]
  9. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014;64:725–730 [CrossRef][PubMed]
    [Google Scholar]
  10. Reichenbach H, Dworkin M. The Myxobacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992; pp.3416–3487
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  19. Busse HJ, Hauser E, Kämpfer P. Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 2005;55:2565–2569 [CrossRef][PubMed]
    [Google Scholar]
  20. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  21. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  24. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003189
Loading
/content/journal/ijsem/10.1099/ijsem.0.003189
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error