1887

Abstract

Avian uropygial glands have received increasing attention in recent years, but little is known about micro-organisms in uropygial glands. In this study, we isolated a strain of Gram-stain-positive, non-motile, non-spore-forming cocci, designated 442, from the uropygial gland of an American barn owl (Tyto furcata) and characterized it using a polyphasic approach. 16S rRNA gene sequence analysis placed the isolate in the genus Kocuria . The G+C content was 70.8 mol%, the major menaquinone was MK-7(H2) and the predominant cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0. Phylogenetic analyses based on the 16S rRNA gene identified Kocuria rhizophila DSM 11926 (99.6 % similarity), Kocuria salsicia DSM 24776 (98.7 %), Kocuria varians DSM 20033 (98.3 %) and Kocuria marina DSM 16420 (98.3 %) as the most closely related species. However, average nucleotide identity values below 86 % indicated that the isolate differed from all species hitherto described. Chemotaxonomic analyses and whole-cell protein profiles corroborated these findings. Accordingly, the isolate is considered to be a member of a novel species, for which the name Kocuria tytonis sp. nov. is proposed. The type strain is 442 (=DSM 104130=LMG 29944).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003170
2019-01-10
2019-10-22
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  2. Purty S, Saranathan R, Prashanth K, Narayanan K, Asir J et al. The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. Emerg Microbes Infect 2013;2:e71 [CrossRef][PubMed]
    [Google Scholar]
  3. Braun MS, Sporer F, Zimmermann S, Wink M. Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol Ecol 2018;94: [CrossRef][PubMed]
    [Google Scholar]
  4. Braun MS, Wang E, Zimmermann S, Boutin S, Wink M. Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov., isolated from the preen glands of Great Spotted Woodpeckers (Dendrocopos major). Syst Appl Microbiol 2018;41:38–43 [CrossRef][PubMed]
    [Google Scholar]
  5. Braun MS, Wang E, Zimmermann S, Wink M. Corynebacterium heidelbergense sp. nov., isolated from the preen glands of Egyptian geese (Alopochen aegyptiacus). Syst Appl Microbiol 2018;41:564–569 [CrossRef]
    [Google Scholar]
  6. Braun MS, Zimmermann S, Danner M, Rashid HO, Wink M. Corynebacterium uropygiale sp. nov., isolated from the preen gland of Turkeys (Meleagris gallopavo). Syst Appl Microbiol 2016;39:88–92 [CrossRef][PubMed]
    [Google Scholar]
  7. Braun MS, Wang E, Zimmermann S, Boutin S, Wagner H et al. Kocuria tytonicola, new bacteria from the preen glands of American barn owls (Tyto furcata). Syst Appl Microbiol 2018; In press [CrossRef][PubMed]
    [Google Scholar]
  8. Rosselló-Móra R, Urdiain M, López-López A. DNA-DNA hybridization. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes Amsterdam, Boston, Heidelberg: Academic Press; 2011; pp.329–332
    [Google Scholar]
  9. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996;46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  10. Benson DA. GenBank. Nucleic Acids Res 2004;33:D34–D38 [CrossRef]
    [Google Scholar]
  11. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  12. Swofford DL. PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0. Sunderland: Sinauer Associates 2003
    [Google Scholar]
  13. Nylander J. Mrmodeltest V2. program Distributed by the Author Uppsala University: Evolutionary Biology Centre; 2004
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  15. Joshi NA, Jn F. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. 2011; Available athttps://github.com/najoshi/sickle
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  19. Stackebrandt E, Schumann P, Kocuria GV. In Bergey's Manual of Systematic Bacteriology, Goodfellow M, et alSpringer: New York, Dordrecht, Heidelberg, London. , Editors 2012;p. 626–.635
    [Google Scholar]
  20. Kaushik B, Saxena A, Prasanna R. Techniques in Microbiology New Delhi: Indian Agricultural Research Institute; 2004
    [Google Scholar]
  21. Tittsler RP, Sandholzer LA. The Use of Semi-solid Agar for the Detection of Bacterial Motility. J Bacteriol 1936;31:575–580[PubMed]
    [Google Scholar]
  22. da Costa MS, Albuquerque L, Fernanda Nobre M, Wait R. The identification of polar lipids in prokaryotes. In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiology: New Approaches to Prokaryotic Systematics Heidelberg: Elsevier; 2014; pp.165–181
    [Google Scholar]
  23. Tindall BJ. A Comparative Study of the Lipid Composition of Halobacterium saccharovorum from Various Sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  24. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  25. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  26. Schumann P, Maier T. MALDI-TOF mass spectrometry applied to classification and identification of bacteria. In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiology: New Approaches to Prokaryotic Systematics Heidelberg: Elsevier; 2014; pp.282–283
    [Google Scholar]
  27. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994;5:25–40
    [Google Scholar]
  28. CLSI Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI document, Ninth ed. Clinical and Laboratory Standards Institute: Wayne, PA; 2012; pp.M07–A9 CLSI document M07-A9
    [Google Scholar]
  29. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty Acids, Antibiotic Resistance, and Deoxyribonucleic Acid Homology Groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003170
Loading
/content/journal/ijsem/10.1099/ijsem.0.003170
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error