1887

Abstract

A novel Gram-stain-negative, aerobic, rod-shaped plant growth promoting bacterium, NEAU-SY24, was isolated from soil in Diaoshuihu, Heilongjiang, China. The isolate grew at temperatures 10–40 °C (optimum, 30 °C), pH 5–8 (optimum, pH 6) and in the presence of up to 1 % (w/v) NaCl, although NaCl was not required for growth. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-SY24 belonged to the genus Trinickia and was closely related to Trinickia dabaoshanensis NRRL B-59553 (99.16 % similarity) and Trinickia soli DSM 18235 (99.11 %). The average nucleotide identity values between NEAU-SY24 and its most closely related species were 79.30–87.09 %. The in silico DNA–DNA hybridization values between NEAU-SY24 and T. dabaoshanensis NRRL B-59553 and T. soli DSM 18235 were 29.30 and 24.00 %, respectively, again indicating they belong to different taxa. The genomic DNA G+C content was 63.3 mol%. The major cellular fatty acids were C17 : 0cyclo, C18 : 1ω7c, C16 : 0, summed feature 2 (comprising C14 : 0 3-OH and/or C16 : 1iso I) and C16 : 0 3-OH. The predominant respiratory quinone was Q-8 and the whole-cell sugars contained ribose, glucose and galactose. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and two unidentified aminolipids. On the basis of morphological, physiological, biochemical and chemotaxonomic analysis, strain NEAU-SY24 was classified as a novel species in the genus Trinickia , for which the name Trinickia diaoshuihuensis sp. nov. is proposed. The type strain is NEAU-SY24 (=DSM 106065=CCTCC AA 2018003).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003155
2018-12-04
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/291.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003155&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992;36:1251–1275 [CrossRef][PubMed]
    [Google Scholar]
  2. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016;66:2836–2846 [CrossRef][PubMed]
    [Google Scholar]
  3. dall'agnol RF, Plotegher F, Souza RC, Mendes IC, dos Reis Junior FB et al. Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian 'Cerradão'. FEMS Microbiol Ecol 2016;92:fiw108 [CrossRef][PubMed]
    [Google Scholar]
  4. Estrada-de Los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS, Hirsch AM. To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol 2016;66:1303–1314 [CrossRef]
    [Google Scholar]
  5. Eberl L, Vandamme P. Members of the genus Burkholderia: good and bad guys. F1000Res 2016;5:1007 [CrossRef][PubMed]
    [Google Scholar]
  6. Peeters C, Meier-Kolthoff JP, Verheyde B, de Brandt E, Cooper VS et al. Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol 2016;7:877 [CrossRef][PubMed]
    [Google Scholar]
  7. Li X, Dorsch M, Dot TD, Sly LI, Stackebrandt E et al. Phylogenetic studies of the rRNA group II pseudomonads based on 16S rRNA gene sequences. J Appl Bacteriol 1993;74:324–329 [CrossRef]
    [Google Scholar]
  8. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S et al. Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 1998;48 Pt 2:549–563 [CrossRef][PubMed]
    [Google Scholar]
  9. Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 2013;67:51–60 [CrossRef][PubMed]
    [Google Scholar]
  10. Estrada-de Los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS, Hirsch AM. To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol 2016;66:1303–1314 [CrossRef]
    [Google Scholar]
  11. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017;110:727–736 [CrossRef][PubMed]
    [Google Scholar]
  12. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018;9:268 [CrossRef][PubMed]
    [Google Scholar]
  13. Pan T, He H, Li C, Zhao J, Zhang Y et al. Streptomyces daqingensis sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2016;66:1358–1363 [CrossRef][PubMed]
    [Google Scholar]
  14. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994; pp.21–41
    [Google Scholar]
  15. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  16. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982;128:1959–1968 [CrossRef]
    [Google Scholar]
  17. Shen Y, Fu Y, Yu Y, Zhao J, Li J et al. Psychrobacillus lasiicapitis sp. nov., isolated from the head of an ant (Lasius fuliginosus). Int J Syst Evol Microbiol 2017;67:4462–4467 [CrossRef][PubMed]
    [Google Scholar]
  18. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Aboratory Manual, 2nd ed. Cold Spring Harbor: NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  19. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  20. Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz HD et al. Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci USA 1993;90:9892–9895 [CrossRef][PubMed]
    [Google Scholar]
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  27. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR et al. Genome data provides high support for generic boundaries in Burkholderia Sensu Lato. Front Microbiol 2017;8:1154 [CrossRef][PubMed]
    [Google Scholar]
  28. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008;24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  33. Xiang W, Liu C, Wang X, du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61:1165–1169 [CrossRef][PubMed]
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  36. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  37. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  38. Yoo SH, Kim BY, Weon HY, Kwon SW, Go SJ et al. Burkholderia soli sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 2007;57:122–125 [CrossRef][PubMed]
    [Google Scholar]
  39. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 2012;62:2272–2278 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhu H, Guo J, Chen M, Feng G, Yao Q et al. Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China. PLoS One 2012;7:e50225 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003155
Loading
/content/journal/ijsem/10.1099/ijsem.0.003155
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error