1887

Abstract

A novel Gram-stain-negative, rod-shaped, ivory-white, facultatively anaerobic and catalase-positive bacterium, designated H1304, was isolated from the gut of sea catfish from Coast of Weihai, China. Optimal growth occurred at 30–33 °C (range, 4–37 °C) and pH 7.0–7.5 (range, pH 6.5–9.0) with 2.0–3.0 % (w/v) NaCl (range, 0.5–4.0 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that H1304 belonged to the genus Cohaesibacter and was most closely related to Cohaesibactermarisflavi CGMCC 1.9157 (96.7 % 16S rRNA gene sequence similarity), Cohaesibactergelatinilyticus MCCC 1A02698 (96.3 %) and Cohaesibacterhaloalkalitolerans KCTC 32038 (96.0 %). The sole isoprenoid quinone was Q-10, the polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, glycolipid, an unidentified phospholipid and an unidentified aminolipid. The major fatty acids (>10 %) were C18 : 1ω7c and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). The DNA G+C content of strain H1304 is 50.8 mol%. Based on the combination of phylogenetic analysis, phenotypic data and chemotaxonomic data, strain H1304 is considered to represent a novel species within the genus Cohaesibacter in the family Cohaesibacteraceae , for which the name Cohaesibacter celericrescens sp. nov. is proposed. The type strain of the new species is H1304 (=KCTC 62075=MCCC 1H00241).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003146
2018-11-29
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/255.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003146&mimeType=html&fmt=ahah

References

  1. Hwang CY, Cho BC. Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov. Int J Syst Evol Microbiol 2008;58:267–277 [CrossRef][PubMed]
    [Google Scholar]
  2. Gallego S, Vila J, María Nieto J, Urdiain M, Rosselló-Móra R et al. Breoghania corrubedonensis gen. nov. sp. nov., a novel alphaproteobacterium isolated from a Galician beach (NW Spain) after the Prestige fuel oil spill, and emended description of the family Cohaesibacteraceae and the species Cohaesibacter gelatinilyticus. Syst Appl Microbiol 2010;33:316–321 [CrossRef][PubMed]
    [Google Scholar]
  3. Qu L, Lai Q, Zhu F, Hong X, Sun X et al. Cohaesibacter marisflavi sp. nov., isolated from sediment of a seawater pond used for sea cucumber culture, and emended description of the genus Cohaesibacter. Int J Syst Evol Microbiol 2011;61:762–766 [CrossRef][PubMed]
    [Google Scholar]
  4. Sultanpuram VR, Lodha TD, Chintalapati VR, Chintalapati S. Cohaesibacter haloalkalitolerans sp. nov., isolated from a soda lake, and emended description of the genus Cohaesibacter. Int J Syst Evol Microbiol 2013;63:4271–4276 [CrossRef][PubMed]
    [Google Scholar]
  5. Liu QQ, Li XL, Rooney AP, du ZJ, Chen GJ. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae. Int J Syst Evol Microbiol 2014;64:3473–3477 [CrossRef][PubMed]
    [Google Scholar]
  6. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998;64:795–799[PubMed]
    [Google Scholar]
  7. Wang NN, Li CM, Li YX, du ZJ. Aquimarina celericrescens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2018;68:1683–1688 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  10. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014;196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  11. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  12. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  13. Dong XZ, Cai MY. Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.364–390
    [Google Scholar]
  14. Cowan ST, Steel KJ. Bacterial characters and characterization. In Cowan ST. (editor) Cowan and Steel’s Manual for the Identification of Medical Bacteria, 2nd ed. Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  15. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 22nd Informational supplement M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  16. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980;118:29–37 [CrossRef][PubMed]
    [Google Scholar]
  17. Xu XW, Wu YH, Wang CS, Oren A, Zhou PJ et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007;57:717–720 [CrossRef][PubMed]
    [Google Scholar]
  18. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000;50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003146
Loading
/content/journal/ijsem/10.1099/ijsem.0.003146
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error