1887

Abstract

A Gram-stain-negative, strictly aerobic, rod-shaped bacterium, designated V18, was isolated from a deep-sea sediment sample collected from the Pacific Ocean and subjected to a polyphasic taxonomic investigation. Cells of strain V18 grew in medium containing 0–10.0 % (w/v) NaCl (optimum 1.0 %), at pH 5.5–9.0 (optimum 6.5–7.0) and at 10–40 °C (optimum 30–37 °C). Aesculin and Tweens 20, 40, 60 and 80 were hydrolysed. The isolate contained carotenoid-like pigments and lacked bacteriochlorophyll a. Strain V18 was closely related to members of the genus Erythrobacter, namely Erythrobacter odishensis JA747 (98.9 % 16S rRNA gene sequence similarity), E. westpacificensis JLT2008 (98.8 %), E. gangjinensis K7-2 (97.7 %), E. aquimixticola JSSK-14 (97.6 %), E. marinus KCTC 23554 (97.4 %), E. atlanticus s21-N3 (97.3 %), E. arachoides RC4-10-4 (97.2 %), E. citreus RE35F/1 (97.1 %) and E. luteus KA37 (97.0 %), and exhibited less than 97.0 % sequence similarity with the type strains of other species with validly published names. Phylogenetic analyses revealed that strain V18 clustered with E. odishensis JA747 and formed an independent lineage. The average nucleotide identity and in silico DNA–DNA hybridization values between strain V18 and the type strains of Erythrobacter species were 70.5–83.4 % and 18.4–26.1 %, respectively. Strain V18 contained ubiquinone 10 (Q-10) as the sole respiratory quinone. The major fatty acids (>10 %) were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major polar lipids were sphingoglycolipid (SGL), diphosphatidylglycerol (DPG), phosphatidyglycerol (PG), phosphatidylethanolamine (PE) and one unidentified lipid (L1). The DNA G+C content was 62.6 mol%. According to the phenotypic, chemotaxonomic and phylogenetic data, strain V18 represents a novel species of the genus Erythrobacter , for which the name Erythrobacter zhengii is proposed. The type strain is V18 (=KCTC 62389=MCCC 1K03475).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003136
2018-11-27
2019-10-13
Loading full text...

Full text loading...

References

  1. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an Aerobic Bacterium Which Contains Bacteriochlorophyll a. Int J Syst Bacteriol 1982;32:211–217 [CrossRef]
    [Google Scholar]
  2. Li DD, Zhang YQ, Peng M, Wang N, Wang XJ et al. Erythrobacter xanthus sp. nov., isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2017;67:2459–2464 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon JH, Kang KH, Oh TK, Park YH. Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54:1981–1985 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee YS, Lee DH, Kahng HY, Kim EM, Jung JS. Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2010;60:1413–1417 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon BJ, Lee DH, Oh DC. Erythrobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013;63:1421–1426 [CrossRef][PubMed]
    [Google Scholar]
  6. Jung YT, Park S, Oh TK, Yoon JH. Erythrobacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012;62:2050–2055 [CrossRef][PubMed]
    [Google Scholar]
  7. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 1994;44:427–434 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2015;65:3714–3719 [CrossRef][PubMed]
    [Google Scholar]
  9. Lei X, Zhang H, Chen Y, Li Y, Chen Z et al. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015;65:2472–2478 [CrossRef][PubMed]
    [Google Scholar]
  10. Jung YT, Park S, Lee JS, Yoon JH. Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:4184–4190 [CrossRef][PubMed]
    [Google Scholar]
  11. Xu M, Xin Y, Yu Y, Zhang J, Zhou Y et al. Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010;60:2215–2220 [CrossRef][PubMed]
    [Google Scholar]
  12. Subhash Y, Tushar L, Sasikala C, Ramana C. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013;63:4524–4532 [CrossRef][PubMed]
    [Google Scholar]
  13. Xing T, Liu Y, Wang N, Xu B, Liu K et al. Erythrobacter arachoides sp. nov., isolated from ice core. Int J Syst Evol Microbiol 2017;67:4235–4239 [CrossRef][PubMed]
    [Google Scholar]
  14. Tonon LAC, Moreira APB, Thompson F. The family Erythrobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer; 2014; pp.213–235
    [Google Scholar]
  15. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007;57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  16. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009;19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  17. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  18. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  19. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  20. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  21. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  29. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001;51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  30. Cai MY, Dong XZ. Determinative manual for routine bacteriology BeiJing: Scientific Press; 2001
    [Google Scholar]
  31. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC, USA: ASM Press; 2007; pp.330–393
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  35. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  36. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM et al. Vibrio Pacini 1854, 411AL. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005; pp.494–546
    [Google Scholar]
  37. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003136
Loading
/content/journal/ijsem/10.1099/ijsem.0.003136
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error