1887

Abstract

Five strains of Gram-stain-negative, rod-shaped bacteria were isolated from Carmichaelia and Montigena root nodules. Based on 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium , and to be most closely related to Mesorhizobium jarvisii ATCC 33669 (100–99.6 % sequence similarity), Mesorhizobium huakuii IAM 14158 (99.9–99.6 %), Mesorhizobium japonicum MAFF303099 (99.8–99.6 %) and Mesorhizobium erdmanii USDA 3471 (99.8–99.5 %). Additionally, the strains formed distinct groups based on housekeeping gene analysis and were most closely related to M. jarvisii ATCC 33669 (89.6–89.5 and 97.6–97.3 % sequence similarity for glnII and recA, respectively), M. erdmanii USDA 3471 (94.3–94.0 and 94.9–94.1 %), M. japonicum MAFF303099 (90.0–89.9 and 96.7–96.2 %) and M. huakuii IAM 14158 (89.9–90.0 and 95.4–94.9 %). Chemotaxonomic data supported the assignment of the strains to the genus Mesorhizobium and DNA–DNA hybridizations, average nucleotide identity analysis, matrix-assisted laser desorption ionization time-of-flight MS analysis, physiological and biochemical tests differentiated them genotypically and phenotypically from their nearest neighbouring species. Therefore, these strains are considered to represent a novel species, for which the name Mesorhizobium carmichaelinearum sp. nov. is proposed. The type strain is ICMP 18942 (=MonP1N1=LMG 28414).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003120
2018-11-20
2019-10-14
Loading full text...

Full text loading...

References

  1. McGlone MS, Duncan RP, Heenan PB. Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. J Biogeogr 2001;28:199–216 [CrossRef]
    [Google Scholar]
  2. Landis CA, Campbell HJ, Begg JG, Mildenhall DC, Paterson AM et al. The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geol Mag 2008;145:173–197 [CrossRef]
    [Google Scholar]
  3. Wagstaff SJ, Heenan PB, Sanderson MJ. Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). Am J Bot 1999;86:1346–1356 [CrossRef][PubMed]
    [Google Scholar]
  4. Heenan PB. Clianthus (Fabaceae) in New Zealand: a reappraisal of Colenso's taxonomy. N Z J Bot 2000;38:361–371 [CrossRef]
    [Google Scholar]
  5. Heenan PB, Dawson MI, Wagstaff SJ. The relationship of Sophora sect. Edwardsia (Fabaceae) to Sophora tomentosa, the type species of the genus Sophora, observed from DNA sequence data and morphological characters. Bot J Linn Soc 2004;146:439–446 [CrossRef]
    [Google Scholar]
  6. Heenan PB, de Lange PJ, Wilton AD. Sophora (Fabaceae) in New Zealand: Taxonomy, distribution, and biogeography. N Z J Bot 2001;39:17–53 [CrossRef]
    [Google Scholar]
  7. Heenan PB. An emended circumscription of Carmichaelia, with new combinations, a key, and notes on hybrids. N Z J Bot 1998;36:53–63 [CrossRef]
    [Google Scholar]
  8. Heenan PB. Montigena (Fabaceae), a new genus endemic to New Zealand. N Z J Bot 1998;36:41–51 [CrossRef]
    [Google Scholar]
  9. Tan HW, Weir BS, Carter N, Heenan PB, Ridgway HJ et al. Rhizobia with 16S rRNA and nifH similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC genes are symbionts of New Zealand Carmichaelinae. PLoS One 2012;7:e47677 [CrossRef][PubMed]
    [Google Scholar]
  10. Weir BS. Systematics, Specificity and Ecology of New Zealand Rhizobia University of Auckland; 2006
    [Google Scholar]
  11. Vincent JM. A Manual for the Practical Study of the Root-Nodule Bacteria, international Biological Programme Handbook Oxford, UK: Blackwell Scientific Publications; 1970
    [Google Scholar]
  12. Tan HW, Heenan PB, de Meyer SE, Willems A, Andrews M. Diverse novel mesorhizobia nodulate New Zealand native Sophora species. Syst Appl Microbiol 2015;38:91–98 [CrossRef][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;37:1870–1874
    [Google Scholar]
  14. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  16. Farris JS, Kallersjo M, Kluge AG, Bult C. Testing significance of incongruence. Cladistics 1994;10:315–319 [CrossRef]
    [Google Scholar]
  17. Swofford DL. PAUP: Phylogenetic Analysis Using Parsimony, version 3.1 Washington, DC: Smithsonian Institution; 1991
    [Google Scholar]
  18. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  19. Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V et al. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015;99:5547–5562 [CrossRef][PubMed]
    [Google Scholar]
  20. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 2000;50:787–801 [CrossRef][PubMed]
    [Google Scholar]
  21. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  22. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  27. de Meyer SE, Briscoe L, Martínez-Hidalgo P, Agapakis CM, de-Los Santos PE et al. Symbiotic Burkholderia species show diverse arrangements of nif/fix and nod genes and lack typical high-affinity cytochrome cbb3 oxidase genes. Mol Plant Microbe Interact 2016;29:609–619 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  31. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  33. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen.nov. Int J Syst Evol Microbiol 1997;47:895–898
    [Google Scholar]
  34. de Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 2015;65:3419–3426 [CrossRef][PubMed]
    [Google Scholar]
  35. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 1994;44:511–522 [CrossRef][PubMed]
    [Google Scholar]
  36. Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY et al. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 2004;54:2003–2012 [CrossRef][PubMed]
    [Google Scholar]
  37. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 2015;65:1703–1708 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003120
Loading
/content/journal/ijsem/10.1099/ijsem.0.003120
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error