1887

Abstract

Two Gram-stain-negative, non-motile, yellow-pigmented bacterial strains, designated IMCC34758 and IMCC34759, were isolated from freshwater. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains formed a distinct clade within the genus Flavobacterium and they shared 97.9 % sequence similarity. The average nucleotide identity (ANI) and digital DNA–DNA hybridization values (dDDH) between the two strains were 85.5 and 30.2 %, respectively, indicating that they are separate species. The two strains showed ≤98.5 % 16S rRNA gene sequence similarities, 80.6–81.3 % of ANI and 24.7–25.1 % of dDDH values to closely related species of the genus Flavobacterium , indicating that the two strains each represent novel Flavobacterium species. The respiratory quinone detected in both strains was menaquinone-6 (MK-6). The major polar lipids of the two strains were phosphatidylethanolamine, an unidentified aminolipid, an unidentified aminophospholipid and an unidentified polar lipid. The DNA G+C contents of strains IMCC34758 and IMCC34759 were 34.0 and 34.1 mol%, respectively. The major fatty acids of the two strains were very similar to each other, comprising iso-C15 : 0, iso-C15 : 1 G, anteiso-C15 : 0 and summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c). Phenotypic characteristics including enzyme activities and carbon source utilization differentiated the two strains from other Flavobacterium species. Based on these results, strains IMCC34758 and IMCC34759 were considered to represent novel species in the genus Flavobacterium , for which the names Flavobacterium hydrophilum (IMCC34758=KACC 19591=NBRC 113423) and Flavobacterium cheongpyeongense (IMCC34759=KACC 19592=NBRC 113424) are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003083
2018-12-19
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/602.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003083&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology, 1st ed. Baltimore, MD: Williams and Wilkins; 1923 pp. 97–117
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  4. Joung Y, Kim H, Joh K. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol 2013; 63:3937–3943 [View Article][PubMed]
    [Google Scholar]
  5. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  6. Bernardet JF, Bowman JP. Genus I. Flavobacterium. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2010 pp. 112–154
    [Google Scholar]
  7. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  8. Park M, Song J, Nam GG, Kim S, Joung Y et al. Flavobacterium lacicola sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2018; 68:1565–1570 [View Article][PubMed]
    [Google Scholar]
  9. Lee Y, Jeon CO. Flavobacterium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2018; 68:1919–1924 [View Article][PubMed]
    [Google Scholar]
  10. Chen WM, Su CL, Young CC, Sheu SY. Flavobacterium fluviatile sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018; 68:1244–1250 [View Article][PubMed]
    [Google Scholar]
  11. Park M, Joung Y, Nam GG, Kim S, Cho JC. Flavobacterium inkyongense sp. nov., isolated from an artificial freshwater pond. Int J Syst Evol Microbiol 2017; 67:82–86 [View Article][PubMed]
    [Google Scholar]
  12. Li AH, Liu HC, Zhou YG. Flavobacterium orientale sp. nov., isolated from lake water. Int J Syst Evol Microbiol 2017; 67:108–112 [View Article][PubMed]
    [Google Scholar]
  13. Ekwe AP, Ahn JH, Kim SB. Flavobacterium keumense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2017; 67:2166–2170 [View Article][PubMed]
    [Google Scholar]
  14. Chen WM, Su CL, Sheu SY. Flavobacterium lacunae sp. nov., isolated from a freshwater pond. Int J Syst Evol Microbiol 2017; 67:875–882 [View Article][PubMed]
    [Google Scholar]
  15. Li DD, Liu C, Zhang YQ, Wang XJ, Wang N et al. Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67:1070–1074 [View Article][PubMed]
    [Google Scholar]
  16. Song L, Liu H, Huang Y, Dai X, Zhou Y. Flavobacterium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:3551–3555 [View Article][PubMed]
    [Google Scholar]
  17. Nupur, Bhumika V, Srinivas TN, Kumar PA. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater. Int J Syst Evol Microbiol 2013; 63:2490–2496 [View Article][PubMed]
    [Google Scholar]
  18. Yoon JH, Park S, Kang SJ, Oh SJ, Myung SC et al. Flavobacterium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:81–85 [View Article][PubMed]
    [Google Scholar]
  19. Liu H, Lu P, Zhu G. Flavobacterium cloacae sp. nov., isolated from waste water. Int J Syst Evol Microbiol 2017; 67:659–663 [View Article][PubMed]
    [Google Scholar]
  20. Fujii D, Nagai F, Watanabe Y, Shirasawa Y. Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int J Syst Evol Microbiol 2014; 64:1488–1494 [View Article][PubMed]
    [Google Scholar]
  21. Zhang J, Jiang RB, Zhang XX, Hang BJ, He J et al. Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 2010; 60:2882–2886 [View Article][PubMed]
    [Google Scholar]
  22. Liu Q, Siddiqi MZ, Liu Q, Huq MA, Lee SY et al. Flavobacterium hankyongi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:1732–1736 [View Article][PubMed]
    [Google Scholar]
  23. Zhang B, Liu ZQ, Zheng YG. Flavobacterium quisquiliarum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2017; 67:3965–3970 [View Article][PubMed]
    [Google Scholar]
  24. Huq MA, Akter S, Lee SY. Flavobacterium chungangensis sp. nov., a bacterium Isolated from Soil of Chinese Cabbage Garden. Curr Microbiol 2018; 75:842–848 [View Article][PubMed]
    [Google Scholar]
  25. Dahal RH, Kim J. Flavobacterium ureilyticum sp. nov., a novel urea hydrolysing bacterium isolated from stream bank soil. Antonie van Leeuwenhoek 2018 [View Article][PubMed]
    [Google Scholar]
  26. Bu JH, Cha CJ. Flavobacterium foetidum sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2018; 68:616–622 [View Article][PubMed]
    [Google Scholar]
  27. Hu G, Zhang J, Yang G, Li YY, Guan YT et al. Flavobacterium yanchengense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:2848–2852 [View Article][PubMed]
    [Google Scholar]
  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  29. Jeon YS, Lee K, Park SC, Kim BS, Cho YJ et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64:689–691 [View Article][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  32. Jukes TH, Cantor CR. Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 1969 pp. 21–132
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  36. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  37. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  38. Bushnell B. BBmap. Available online at https://sourceforge.net/projects/bbmap
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  41. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  43. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  44. Collins MD, Costas M, Owen RJ. Isoprenoid quinone composition of representatives of the genus Campylobacter. Arch Microbiol 1984; 137:168–170 [View Article][PubMed]
    [Google Scholar]
  45. Jin Y, Kim YJ, Hoang VA, Young Jung S, Nguyen NL et al. Flavobacterium panaciterrae sp. nov., a β-glucosidase producing bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J Gen Appl Microbiol 2014; 60:59–64 [View Article][PubMed]
    [Google Scholar]
  46. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Domínguez L et al. Characterization of flavobacteria possibly associated with fish and fish farm environment. Description of three novel Flavobacterium species: Flavobacterium collinsii sp. nov., Flavobacterium branchiarum sp. nov., and Flavobacterium branchiicola sp. nov. PLoS One 2013; 8:e67741
    [Google Scholar]
  47. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Moore ER et al. Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2014; 64:392–399 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003083
Loading
/content/journal/ijsem/10.1099/ijsem.0.003083
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error