1887

Abstract

A Gram-stain-negative bacterium, designated strain IO390401, was isolated from a seawater sample from the sulphide region of the Indian Ocean. Phylogenetic trees based on 16S rRNA gene sequences showed that strain IO390401 is a member of the genus Alteromonas , sharing 97.0−97.4 % 16S rRNA gene sequence similarity with Alteromonas addita R10SW13, A. stellipolaris LMG 21861, A. naphthalenivorans JCM 17741, A. gracilis 9a2 and A. australica H17, and 94.8−96.8 % with the type strains of other species of the genus Alteromonas . Strain IO390401 contained ubiquinone-8 (Q-8) as the sole isoprenoid quinone, C16:0 and C16:1 ω7c/C16:1 ω6c as the dominant cellular fatty acids, and phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The genome of strain IO390401 consists of a 4.4 Mb chromosome with a G+C content of 48.2 mol%. Average nucleotide identity values between strain IO390401 and the three closest phylogenetic neighbours, namely A. addita R10SW13, A. stellipolaris LMG 21861 and A. naphthalenivorans JCM 17741, were 70.5, 70.4 and 70.6 %, respectively, and the corresponding in silico DNA–DNA hybridization values were 20.6, 20.7 and 21.1 %. Phylogenetic distinctiveness and chemotaxonomic differences, together with phenotypic properties determined in this study, revealed that strain IO390401 could be differentiated from closely related species. It is therefore proposed as representing a novel species in the genus Alteromonas , for which the name Alteromonas indica sp. nov. is suggested. The type strain is IO390401 (=JCM 32638=CGMCC 1.13554=CCTCC AB 2018072).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003078
2018-10-23
2019-10-17
Loading full text...

Full text loading...

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972;110:402–429[PubMed]
    [Google Scholar]
  2. Mi Jin H, Hyun Kim K, Ok Jeon C. Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 2015;65:4208–4214 [CrossRef][PubMed]
    [Google Scholar]
  3. Park S, Choi SJ, Park JM, Yoon JH. Alteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:2791–2797 [CrossRef][PubMed]
    [Google Scholar]
  4. Martínez-Checa F, Béjar V, Llamas I, del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2005;55:2385–2390 [CrossRef][PubMed]
    [Google Scholar]
  5. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015;65:1498–1503 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54:1197–1201 [CrossRef][PubMed]
    [Google Scholar]
  7. Sinha RK, Krishnan KP, Singh A, Thomas FA, Jain A et al. Alteromonas pelagimontana sp. nov., a marine exopolysaccharide-producing bacterium isolated from the Southwest Indian Ridge. Int J Syst Evol Microbiol 2017;67:4032–4038 [CrossRef][PubMed]
    [Google Scholar]
  8. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2003;53:1625–1630 [CrossRef][PubMed]
    [Google Scholar]
  9. van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004;54:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  10. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005;55:1065–1068 [CrossRef][PubMed]
    [Google Scholar]
  11. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013;103:877–884 [CrossRef][PubMed]
    [Google Scholar]
  12. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015;107:119–132 [CrossRef][PubMed]
    [Google Scholar]
  13. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017;67:237–242 [CrossRef][PubMed]
    [Google Scholar]
  14. Wang X, Lin D, Jing X, Zhu S, Yang J et al. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone. J Biotechnol 2018;266:34–38 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic acid techniques in bacterial systematics Chichester, United Kingdom: John Wiley & Sons; 1991; pp.115–175
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  19. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio 2014;5:e0213614 [CrossRef][PubMed]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  23. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955;1:138–146
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  26. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003078
Loading
/content/journal/ijsem/10.1099/ijsem.0.003078
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error