1887

Abstract

A strain of lactic acid bacteria, designated NtB2, isolated from the gut of the wood-feeding higher termite Nasutitermes takasagoensis, was characterized genetically and phenotypically. Strain NtB2 was related to Lactococcus lacti subsp. tructae JCM 31125 isolated from brown trout, showing 93.2 and 81.0 % similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, genomic comparisons using pairwise average nucleotide identity analysis and the Genome-to-Genome Distance Calculator between strain NtB2 and L. lacti subsp. tructae JCM 31125 gave values of 81.0 and 23.2 %, respectively. Major cellular fatty acids produced by strain NtB2 were C18 : 1ω9c and C16 : 0. The cell-wall peptidoglycan type of strain NtB2 was A3α, Lys–Gly–Ser–Ala2. Based on the data presented, the isolate represents a novel species of the genus Lactococcus , for which the name Lactococcus termiticola sp. nov. is proposed. The type strain is NtB2 (=JCM 32569=DSM 107259).

Keyword(s): rpoB and termite
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003068
2018-10-15
2019-08-18
Loading full text...

Full text loading...

References

  1. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 2014;12:168–180 [CrossRef][PubMed]
    [Google Scholar]
  2. Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion. In Bignell DE, Roisin Y, Lo N. (editors) Biology of Termites: A Modern Synthesis New York: Springer; 2011; pp.439–475
    [Google Scholar]
  3. Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S et al. Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 2006;72:6780–6788 [CrossRef][PubMed]
    [Google Scholar]
  4. Köhler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 2012;78:4691–4701 [CrossRef][PubMed]
    [Google Scholar]
  5. Bauer S, Tholen A, Overmann J, Brune A. Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 2000;173:126–137 [CrossRef][PubMed]
    [Google Scholar]
  6. Higashiguchi DT, Husseneder C, Grace JK, Berestecky JM. Pilibacter termitis gen. nov., sp. nov., a lactic acid bacterium from the hindgut of the Formosan subterranean termite (Coptotermes formosanus). Int J Syst Evol Microbiol 2006;56:15–20 [CrossRef][PubMed]
    [Google Scholar]
  7. Yan Yang S, Zheng Y, Huang Z, Min Wang X, Yang H. Lactococcus nasutitermitis sp. nov. isolated from a termite gut. Int J Syst Evol Microbiol 2016;66:518–522 [CrossRef][PubMed]
    [Google Scholar]
  8. Yuki M, Sakamoto M, Nishimura Y, Ohkuma M. Lactococcus reticulitermitis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. Int J Syst Evol Microbiol 2018;68:596–601 [CrossRef][PubMed]
    [Google Scholar]
  9. Noda S, Shimizu D, Yuki M, Kitade O, Ohkuma M. Host-symbiont cospeciation of termite-gut cellulolytic protists of the genera Teranympha and Eucomonympha and their Treponema endosymbionts. Microbes Environ 2018;33:26–33 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  11. Noda S, Aihara C, Yuki M, Ohkuma M. Draft genome sequence of Lactococcus sp. strain NtB2 (JCM 32569), isolated from the gut of the higher termite Nasutitermes takasagoensis. Genome Announc 2018;6:e00445-18 [CrossRef][PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  15. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  17. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  18. Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA et al. Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 2006;8:11–20 [CrossRef][PubMed]
    [Google Scholar]
  19. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017;67:1219–1227 [CrossRef][PubMed]
    [Google Scholar]
  20. Holdeman L, Cato E, Moore W. Anaerobic Laboratory Manual, 4th ed. Blacksburg, VA: Virginia polytechnic Institute and State University; 1977
    [Google Scholar]
  21. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  23. Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD et al. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 1985;6:183–195 [CrossRef]
    [Google Scholar]
  24. Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E et al. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2011;61:1894–1898 [CrossRef][PubMed]
    [Google Scholar]
  25. Chen YS, Chang CH, Pan SF, Wang LT, Chang YC et al. Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia. Int J Syst Evol Microbiol 2013;63:2405–2409 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003068
Loading
/content/journal/ijsem/10.1099/ijsem.0.003068
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error