1887

Abstract

Seven endophytic strains were isolated from the halophyte Halimione portulacoides, collected from Ria de Aveiro, Portugal. To determine their exact taxonomic position, comparative analyses were performed with these strains and closely related type strains of Salinicola species. Genome sequencing and comparison indicated that five of the seven isolated strains comprised distinct and novel species (average nucleotide identity <0.95; in silico DNA–DNA hybridization <70 %; G+C difference >1 %). Multilocus sequence analysis was performed using gyrB, rpoD and 16S rRNA gene sequences from the novel and type strains to determine their phylogenetic positions. The novel strains are facultative anaerobes, mesophilic, facultative alkaliphic and halophilic, test positive for catalase and oxidase activities, for hydrolysis of Tween 20 and phosphate, for production of indole-3-acetic acid, but do not produce H2S. Ubiquinone UQ-9 is present in major amounts in all strains. The major fatty acids include C16 : 0 and the summed feature containing C18 : 1ω7c and/or C18 : 1ω6c. The DNA G+C content ranges from 60.6 to 65.8 mol%. Five strains were confirmed as new species belonging to the genus Salinicola , for which the names Salinicola halimionae sp. nov. (type strain CPA60=CECT 9338=LMG 30107), Salinicola aestuarinus sp. nov. (type strain CPA62=CECT 9339=LMG 30108), Salinicola endophyticus sp. nov. (type strain CPA92=CECT 9340=LMG 30109), Salinicola halophyticus sp. nov. (type strain CR45=CECT 9341=LMG 30105) and Salinicola lusitanus sp. nov. (type strain CR50=CECT 9342=LMG 30106) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003061
2018-11-12
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/46.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003061&mimeType=html&fmt=ahah

References

  1. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 1988; 11:16–19 [View Article]
    [Google Scholar]
  2. Dobson SJ, Franzmann PD. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 1996; 46:550–558 [View Article]
    [Google Scholar]
  3. Ntougias S, Zervakis GI, Fasseas C. Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 2007; 57:1975–1983 [View Article][PubMed]
    [Google Scholar]
  4. Ben Ali Gam Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R et al. Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 2007; 57:2307–2313 [View Article][PubMed]
    [Google Scholar]
  5. de La Haba RR, Arahal DR, Márquez MC, Ventosa A. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 2010; 60:737–748 [View Article][PubMed]
    [Google Scholar]
  6. de La Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol 2012; 62:520–538 [View Article][PubMed]
    [Google Scholar]
  7. Oren A, Ventosa A. Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae. Int J Syst Evol Microbiol 2013; 63:3540–3544
    [Google Scholar]
  8. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  9. Oren A, Ventosa A. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Halobacteriaceae and subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 23 May 2016, San Juan, Puerto Rico. Int J Syst Evol Microbiol 2016; 66:4291–4295 [View Article][PubMed]
    [Google Scholar]
  10. Anan'ina LN, Plotnikova EG, Gavrish E, Demakov VA, Evtushenko LI. [Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association]. Mikrobiologiia 2007; 76:324–330
    [Google Scholar]
  11. Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O. Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 2004; 54:721–725 [View Article][PubMed]
    [Google Scholar]
  12. Martínez-Cánovas MJ, Quesada E, Llamas I, Béjar V. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2004; 54:733–737 [View Article][PubMed]
    [Google Scholar]
  13. de La Haba RR, Sánchez-Porro C, Márquez MC, Ventosa A. Taxonomic study of the genus Salinicola: transfer of Halomonas salaria and Chromohalobacter salarius to the genus Salinicola as Salinicola salarius comb. nov. and Salinicola halophilus nom. nov., respectively. Int J Syst Evol Microbiol 2010; 60:963–971 [View Article][PubMed]
    [Google Scholar]
  14. Huo YY, Meng FX, Xu L, Wang CS, Xu XW. Salinicola peritrichatus sp. nov., isolated from deep-sea sediment. Antonie van Leeuwenhoek 2013; 104:55–62 [View Article][PubMed]
    [Google Scholar]
  15. Lepcha RT, Poddar A, Schumann P, Das SK. Comparative 16S rRNA signatures and multilocus sequence analysis for the genus Salinicola and description of Salinicola acroporae sp. nov., isolated from coral Acropora digitifera. Antonie van Leeuwenhoek 2015; 108:59–73 [View Article][PubMed]
    [Google Scholar]
  16. Raju K, Sekar J, Vaiyapuri Ramalingam P. Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 2016; 66:1074–1079 [View Article][PubMed]
    [Google Scholar]
  17. Cao L, Yan Q, Ni H, Hu G, Hong Q et al. Salinicola zeshunii sp. nov., a moderately halophilic bacterium isolated from soil of a chicken farm. Curr Microbiol 2013; 66:192–196 [View Article][PubMed]
    [Google Scholar]
  18. Zhao GY, Zhao LY, Xia ZJ, Zhu JL, Liu D et al. Salinicola tamaricis sp. nov., a heavy-metal-tolerant, endophytic bacterium isolated from the halophyte Tamarix chinensis Lour. Int J Syst Evol Microbiol 2017; 67:1813–1819 [View Article][PubMed]
    [Google Scholar]
  19. Fidalgo C, Henriques I, Rocha J, Tacão M, Alves A. Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization, and influence of metal(loid) contamination. Environ Sci Pollut Res Int 2016; 23:10200–10214 [View Article][PubMed]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  21. Andrews S. 2010; FastQC: A quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc/ [accesse February 2017]
  22. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  24. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  25. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2016; 44:D7–D19 [View Article][PubMed]
    [Google Scholar]
  28. McWilliam H, Li W, Uludag M, Squizzato S, Park YM et al. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 2013; 41:W597–W600 [View Article][PubMed]
    [Google Scholar]
  29. Hall TA. BioEdit: a user-friendly biological sequence alignment edit and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  30. Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 2007; 7:965–968 [View Article]
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  39. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 1982; 128:1959–1968
    [Google Scholar]
  40. Proença DN, Nobre MF, Morais PV. Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 2014; 64:1237–1243 [View Article][PubMed]
    [Google Scholar]
  41. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  42. Kim M, Park SC, Baek I, Chun J. Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. Syst Appl Microbiol 2015; 38:79–83 [View Article][PubMed]
    [Google Scholar]
  43. Kim KK, Jin L, Yang HC, Lee ST. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 2007; 57:675–681 [View Article][PubMed]
    [Google Scholar]
  44. Owen RJ, Pitcher D. Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 67–93
    [Google Scholar]
  45. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  46. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:e0092714 [View Article][PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  48. Aguilera M, Cabrera A, Incerti C, Fuentes S, Russell NJ et al. Chromohalobacter salarius sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain. Int J Syst Evol Microbiol 2007; 57:1238–1242 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003061
Loading
/content/journal/ijsem/10.1099/ijsem.0.003061
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error