1887

Abstract

A novel Gram-stain-positive, rod-shaped, motile, spore-forming, strictly aerobic, alkali- and halo- tolerant bacterium, designated strain AK72, was isolated from a water sample collected from Sambhar salt lake, Rajasthan, India. The colony appears circular, shiny, smooth, translucent or slightly pale in colour and convex with an entire margin after 48 h incubation at 37 °C with pH 9. Growth of the bacterium occurred at 10–42 °C (optimum, 25–37 °C), at salinities of 0.5–10 % (w/v) NaCl (optimum 3–5 % NaCl) and pH of 6–10 (optimum pH 9). Strain AK72 was positive for oxidase, catalase, nitrate reductase, phenylalanine deaminase, ornithine decarboxylase, aesculinase, lipase and urease activities. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 and the cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The major polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid, three unidentified phospholipids and three unidentified lipids. The genomic DNA G+C content of the strain AK72 was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain AK72 was closely related to Bacillus cellulosilyticus (96.5 %) and Bacillus vedderi (96.3 %), but the novel strain AK72 formed a separate clade with Bacillus aurantiacus whereas B. cellulosilyticus and B. vedderi were clustered in a separate clade. The above data in combination with the phenotypic characteristics and phylogenetic data inferred that strain AK72 represents a novel species of the genus Bacillus , for which the name Bacillus shivajii sp. nov. is proposed. The type strain is AK72 (=MTCC 12636=KCTC 33981=JCM 32183).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003008
2018-09-12
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3463.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003008&mimeType=html&fmt=ahah

References

  1. Cohn F. Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen Heft 1872;2:127–224
    [Google Scholar]
  2. Niall A, Logan, de Vos P. Genus I. Bacillus Cohn 1872, 174AL. In Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 3 The Firmicutes New York: Springer; 2009; pp.21–127
    [Google Scholar]
  3. Euzéby JP. List of prokaryotic names with standing in nomenclature (LPSN). 2018;www.bacterio.net/bacillus.html
  4. Newcombe D, Dekas A, Mayilraj S, Venkateswaran K. Bacillus canaveralius sp. nov., an alkali-tolerant bacterium isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 2009;59:2015–2019 [CrossRef][PubMed]
    [Google Scholar]
  5. Sorokin DY, van Pelt S, Tourova TP. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 2008;288:235–240 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee JC, Lee GS, Park DJ, Kim CJ. Bacillus alkalitelluris sp. nov., an alkaliphilic bacterium isolated from sandy soil. Int J Syst Evol Microbiol 2008;58:2629–2634 [CrossRef][PubMed]
    [Google Scholar]
  7. Ghosh A, Bhardwaj M, Satyanarayana T, Khurana M, Mayilraj S et al. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 2007;57:238–242 [CrossRef][PubMed]
    [Google Scholar]
  8. Dou G, Liu H, He W, Ma Y. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils. Antonie van Leeuwenhoek 2016;109:149–158 [CrossRef][PubMed]
    [Google Scholar]
  9. Vedder A. Bacillus alcalophilus n. sp.; benevens enkele ervaringen met stark alcalische voedingsbodems. Antonie van Leeuwenhoek 1934;1:141–147
    [Google Scholar]
  10. Borsodi AK, Pollák B, Kéki Z, Rusznyák A, Kovács AL et al. Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. Int J Syst Evol Microbiol 2011;61:1880–1886 [CrossRef][PubMed]
    [Google Scholar]
  11. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 1998;171:19–30 [CrossRef][PubMed]
    [Google Scholar]
  12. Baesman SM, Stolz JF, Kulp TR, Oremland RS. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 2009;13:695–705 [CrossRef][PubMed]
    [Google Scholar]
  13. Borsodi AK, Márialigeti K, Szabó G, Palatinszky M, Pollák B et al. Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 2008;58:845–851 [CrossRef][PubMed]
    [Google Scholar]
  14. Vargas VA, Delgado OD, Hatti-Kaul R, Mattiasson B. Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. Int J Syst Evol Microbiol 2005;55:899–902 [CrossRef][PubMed]
    [Google Scholar]
  15. Vishnuvardhan Reddy S, Thirumala M, Farooq M. Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2015;65:2441–2446 [CrossRef][PubMed]
    [Google Scholar]
  16. Tiago I, Pires C, Mendes V, Morais PV, Da Costa MS et al. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 2006;56:2571–2574 [CrossRef][PubMed]
    [Google Scholar]
  17. Heyndrickx M, Logan NA, Lebbe L, Rodríguez-Díaz M, Forsyth G et al. Bacillus galactosidilyticus sp. nov., an alkali-tolerant β-galactosidase producer. Int J Syst Evol Microbiol 2004;54:617–621 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhu D, Tanabe SH, Xie C, Honda D, Sun J et al. Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 2014;64:1712–1717 [CrossRef][PubMed]
    [Google Scholar]
  19. Denizci AA, Kazan D, Erarslan A. Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 2010;60:1590–1594 [CrossRef][PubMed]
    [Google Scholar]
  20. Nowlan B, Dodia MS, Singh SP, Patel BK. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 2006;56:1073–1077 [CrossRef][PubMed]
    [Google Scholar]
  21. Olivera N, Siñeriz F, Breccia JD. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 2005;55:443–447 [CrossRef][PubMed]
    [Google Scholar]
  22. Aino K, Hirota K, Matsuno T, Morita N, Nodasaka Y et al. Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. Int J Syst Evol Microbiol 2008;58:120–124 [CrossRef][PubMed]
    [Google Scholar]
  23. Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 2010;60:61–66 [CrossRef][PubMed]
    [Google Scholar]
  24. Agnew MD, Koval SF, Jarrell KF. Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 1995;18:221–230 [CrossRef]
    [Google Scholar]
  25. Harjodh S, Manpreet K, Lakhwinder K, Shivani S, Sunita M et al. Bacillus lacus sp. nov., isolated from a water sample of a salt lake in India. Int J Syst Evol Microbiol 2018;68:801–809
    [Google Scholar]
  26. Singh H, Kaur M, Sharma S, Kaur L, Mishra S et al. Bacillus alkalilacus sp. nov., isolated from a sediment sample from a lake in India. Int J Syst Evol Microbiol 2018;68:1665–1671 [CrossRef][PubMed]
    [Google Scholar]
  27. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996;60:407–438[PubMed]
    [Google Scholar]
  28. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  29. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Good Fellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  36. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  38. Srinivas TN, Nageswara Rao SS, Vishnu Vardhan Reddy P, Pratibha MS, Sailaja B et al. Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of kongsfjorden and Ny-alesund, Svalbard, Arctic. Curr Microbiol 2009;59:537–547 [CrossRef][PubMed]
    [Google Scholar]
  39. Anil Kumar P, Aravind R, Francis K, Bhumika V, Ritika C et al. Shivajiella indica gen. nov., sp. nov., a marine bacterium of the family "Cyclobacteriaceae" with nitrate reducing activity. Syst Appl Microbiol 2012;35:320–325 [CrossRef][PubMed]
    [Google Scholar]
  40. Nall A, Logan, Vos PD. Genus I. Bacillus Cohn 1872, 174AL. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.21–127
    [Google Scholar]
  41. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands Budapest DC. (editors) Methods in Phytobacteriology Hungry: Akademiai Kiado; 1990; pp.199–204
    [Google Scholar]
  42. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  43. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–206
    [Google Scholar]
  44. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  45. Sly LI, Blackall LL, Kraat PC, Tian-Shen T, Sangkhobol V. The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 1986;5:139–156
    [Google Scholar]
  46. Borsodi AK, Márialigeti K, Szabó G, Palatinszky M, Pollák B et al. Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 2008;58:845–851 [CrossRef][PubMed]
    [Google Scholar]
  47. Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 2005;55:2309–2315 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003008
Loading
/content/journal/ijsem/10.1099/ijsem.0.003008
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error