1887

Abstract

A novel actinobacterium, designated strain NEAU-SW521, was isolated from soil collected from Xianglu Mountain, Heilongjiang province, north PR China. The results of analysis of the 16S rRNA gene indicated that NEAU-SW521 represented a member of the genus Kribbella . The results of phylogenetic analyses using the 16S rRNA gene and multilocus sequence analysis using the concatenated gene sequences of the gyrB, rpoB, relA, recA and atpD genes all indicated that the strain formed a clade with Kribbella alba DSM 15500 (99.16 %), Kribbella ginsengisoli JCM 16928 (98.96 %), Kribbella catacumbae JCM 14968 (98.82 %), Kribbella sancticallisti JCM 14969 (98.62 %), Kribbella qitaiheensis NEAU-GQTH2-3 (98.61 %) and Kribbella koreensis JCM 10977 (98.47 %). The cell wall contained ll-diaminopimelic acid as the major diamino acid and the whole-cell hydrolysates were ribose, glucose and galactose. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The predominant menaquinone was MK-9(H4). Major fatty acids were iso-C16 : 0 and anteiso-C15 : 0. These chemotaxonomic data supported the affiliation of NEAU-SW521 to the genus Kribbella . The DNA G+C content was 67.8 mol%. Furthermore, the strain could be clearly distinguished by concatenated gene genetic distances, the combination of DNA–DNA hybridization results and some phenotypic characteristics. Therefore, it is proposed that NEAU-SW521 represents a novel species of the genus Kribbella , for which the name Kribbella monticola sp. nov. is proposed. The type strain is NEAU-SW521 (=CGMCC 4.7465=DSM 105770).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003007
2018-11-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3441.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003007&mimeType=html&fmt=ahah

References

  1. Park YH, Yoon JH, Shin YK, Suzuki K, Kudo T et al. Classification of 'Nocardioides fulvus' IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov. Int J Syst Bacteriol 1999;49:743–752 [CrossRef][PubMed]
    [Google Scholar]
  2. Everest GJ, Curtis SM, de Leo F, Urzì C, Meyers PR. Description of Kribbella italica sp. nov., isolated from a Roman catacomb. Int J Syst Evol Microbiol 2015;65:491–496 [CrossRef][PubMed]
    [Google Scholar]
  3. Everest GJ, Curtis SM, de Leo F, Urzì C, Meyers PR. Kribbella albertanoniae sp. nov., isolated from a Roman catacomb, and emended description of the genus Kribbella. Int J Syst Evol Microbiol 2013;63:3591–3596 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon JH, Park YH. The genus Nocardioides. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotesvol. 3 New York: Springer; 2006; pp.1099–1113
    [Google Scholar]
  5. Mohammadipanah F, Hamedi J, Göker M, Fiebig A, Pukall R et al. Kribbella shirazensis sp. nov., isolated from soil of Shiraz in Iran. Int J Syst Evol Microbiol 2013;63:3369–3374
    [Google Scholar]
  6. Ozdemir-Kocak F, Saygin H, Saricaoglu S, Cetin D, Guven K et al. Kribbella soli sp. nov., isolated from soil. Antonie van Leeuwenhoek 2017;110:641–649 [CrossRef][PubMed]
    [Google Scholar]
  7. Ozdemir-Kocak F, Isik K, Saricaoglu S, Saygin H, Inan-Bektas K et al. Kribbella sindirgiensis sp. nov. isolated from soil. Arch Microbiol 2017;199:1399–1407 [CrossRef][PubMed]
    [Google Scholar]
  8. Sun JQ, Xu L, Guo Y, Li WL, Shao ZQ et al. Kribbella deserti sp. nov., isolated from rhizosphere soil of Ammopiptanthus mongolicus. Int J Syst Evol Microbiol 2017;67:692–696 [CrossRef][PubMed]
    [Google Scholar]
  9. Atlas RM. Handbook of microbiological media. Q Rev Biol 2006;2:364–365
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  11. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  12. Waksman SA. The Actinomycetes: A Summary of Current Knowledge New York: Ronald; 1967
  13. Waksman SA. The Actinomycetesvol. 2 Classification, Identification and Descriptions Of genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  14. Kelly KL. Inter-Society Color Council–National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Published In US 1964
    [Google Scholar]
  15. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013;103:399–408 [CrossRef][PubMed]
    [Google Scholar]
  16. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012;102:1–7 [CrossRef][PubMed]
    [Google Scholar]
  17. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  18. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  19. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993;43:805–812 [CrossRef]
    [Google Scholar]
  20. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  21. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (Special Publication vol 6) Arlington: Society of Industrial Microbiology; 1980; pp.227–291
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  23. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  24. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  25. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105:307–315 [CrossRef][PubMed]
    [Google Scholar]
  26. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61:1165–1169 [CrossRef][PubMed]
    [Google Scholar]
  27. Monteiro M, Moreira N, Pinto J, Pires-Luís AS, Henrique R et al. GC–MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med 2017;21:2092–2105 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000;50:2031–2036 [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  35. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968;12:195–206
    [Google Scholar]
  36. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  37. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  38. Thomas EA, Alvarez CE, Sutcliffe JG. Evolutionarily distinct classes of S27 ribosomal proteins with differential mRNA expression in rat hypothalamus. J Neurochem 2000;74:2259–2267 [CrossRef][PubMed]
    [Google Scholar]
  39. Curtis SM, Norton I, Everest GJ, Meyers PR. Kribbella podocarpi sp. nov., isolated from the leaves of a yellowwood tree (Podocarpus latifolius). Antonie van Leeuwenhoek 2018;111:875–882 [CrossRef][PubMed]
    [Google Scholar]
  40. Curtis SM, Meyers PR. Multilocus sequence analysis of the actinobacterial genus Kribbella. Syst Appl Microbiol 2012;35:441–446 [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
  42. Kaewkla O, Franco CM. Kribbella pittospori sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of an Australian native apricot tree, Pittosporum angustifolium. Int J Syst Evol Microbiol 2016;66:2284–2290 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003007
Loading
/content/journal/ijsem/10.1099/ijsem.0.003007
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error