1887

Abstract

A thermophilic, spore-forming, rod-shaped bacterium isolated from the Yumthang hot spring in North Sikkim, India was subjected to taxonomic studies. The thermophilic bacterial isolate was designated as strain AYN2. Cells were Gram-stain-positive, aerobic, motile, rod-shaped, catalase-positive and methyl red-negative. Strain AYN2 was able to grow in the pH range from 6 to 10 (optimum, pH 7.5–8.0), at 40–70 °C (60 °C) and in NaCl concentrations of 0–4 % (1 %). The major cellular fatty acids were iso-C15 : 0 (12.8 %), iso-C16 : 0 (13.9 %) and iso-C17 : 0 (13.8 %). No matches were found in the rtsba6 Sherlock libraries. The G+C content of the genomic DNA was 42.11 mol%. Based on phylogenetic analysis of the 16S rRNA gene sequences, strain AYN showed highest sequence similarity to the type strain of Geobacillus toebii (96 %). However, the phenotypic properties of strain AYN2 were clearly distinct from those of G. toebii and related species. On the basis of polyphasic analysis, strain AYN2 represents a novel species in the genus Geobacillus , for which the name Geobacillus yumthangensis sp. nov. is proposed. The type strain is AYN2(MTCC=12749=KCTC=33950= JCM 32596).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003002
2018-09-17
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3430.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003002&mimeType=html&fmt=ahah

References

  1. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991;13:202–206 [CrossRef]
    [Google Scholar]
  2. Nazina TN, Tourova TP, Poltaraus AB, Novikova E V, Grigoryan AA et al. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus,Bacillus thermocatenulatus,Bacillus thermoleovorans,Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 2001;51:433–446
    [Google Scholar]
  3. Zeigler DR. The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet?. Microbiology 2014;160:1–11 [CrossRef][PubMed]
    [Google Scholar]
  4. Popova NA, Nikolaev I, Turova TP, Lysenko AM, Osipov GA et al. Geobacillus uralicus, a new species of thermophilic bacteria. Mikrobiologiia 2002;71:335–341
    [Google Scholar]
  5. Kuisiene N, Raugalas J, Chitavichius D. Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 2004;54:1991–1995 [CrossRef][PubMed]
    [Google Scholar]
  6. Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E. Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents. Syst Appl Microbiol 2002;25:450–455 [CrossRef][PubMed]
    [Google Scholar]
  7. Hawumba JF, Theron J, Brözel VS. Thermophilic protease-producing Geobacillus from Buranga hot springs in Western Uganda. Curr Microbiol 2002;45:144–150 [CrossRef][PubMed]
    [Google Scholar]
  8. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 2004;54:2019–2024 [CrossRef][PubMed]
    [Google Scholar]
  9. Takami H, Nishi S, Lu J, Shimamura S, Takaki Y. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 2004;8:351–356 [CrossRef][PubMed]
    [Google Scholar]
  10. Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO et al. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 2002;52:2251–2255 [CrossRef][PubMed]
    [Google Scholar]
  11. Wiegand S, Rabausch U, Chow J, Daniel R, Streit WR et al. Complete genome sequence of Geobacillus sp. Strain GHH01, a thermophilic lipase-secreting bacterium. Genome Announc 2013;1:1–2 [CrossRef][PubMed]
    [Google Scholar]
  12. de Champdoré M, Staiano M, Rossi M, D'Auria S. Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 2007;4:183–191 [CrossRef][PubMed]
    [Google Scholar]
  13. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 2009;11:398–408 [CrossRef][PubMed]
    [Google Scholar]
  14. Markossian S, Becker P, Märkl H, Antranikian G. Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an icelandic hot spring. Extremophiles 2000;4:365–371 [CrossRef][PubMed]
    [Google Scholar]
  15. Hagen CA, Hawrylewicz EJ, Anderson BT, Tolkacz VK, Cephus ML. Use of the scanning electron microscope for viewing bacteria in soil. Appl Microbiol 1968;16:932–934[PubMed]
    [Google Scholar]
  16. Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 2016;6:1–8 [CrossRef][PubMed]
    [Google Scholar]
  17. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E et al. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 2015;46:443–453 [CrossRef][PubMed]
    [Google Scholar]
  18. Buyer JS, Sasser M. High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology 2012;61:127–130 [CrossRef]
    [Google Scholar]
  19. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR. Novel division level bacterial diversity in a Yellowstone Hot Spring novel division level bacterial diversity in a Yellowstone Hot Spring. J Bacteriol 1998;180:366–376
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  22. Dahllöf I, Baillie H, Kjelleberg S. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 2000;66:3376–3380 [CrossRef][PubMed]
    [Google Scholar]
  23. Cusick KD, Fitzgerald LA, Cockrell AL, Biffinger JC. Selection and evaluation of reference genes for reverse transcription-quantitative pcr expression studies in a thermophilic bacterium grown under different culture conditions. PLoS One 2015;10:e0131015e0131023 [CrossRef][PubMed]
    [Google Scholar]
  24. Diouf F, Diouf D, Klonowska A, Le Queré A, Bakhoum N et al. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern. PLoS One 2015;10:e0117667 [CrossRef][PubMed]
    [Google Scholar]
  25. Najar IN, Sherpa MT, Das S, Thakur N. Draft genome sequence of Geobacillus yumthangensis AYN2 sp. nov., a denitrifying and sulfur reducing thermophilic bacterium isolated from the hot springs of Sikkim. Gene Rep 2018;10:162–166 [CrossRef]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  27. Brumm P, Land ML, Hauser LJ, Jeffries CD, Chang Y-J et al. Complete genome sequence of Geobacillus strain Y4.1MC1, a novel co-utilizing Geobacillus thermoglucosidasius strain isolated from bath hot spring in Yellowstone National Park. Bioenergy Res 2015;8:1039–1045 [CrossRef]
    [Google Scholar]
  28. Brumm PJ, Land ML, Mead DA. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost. Stand Genomic Sci 2016;11:1–8 [CrossRef][PubMed]
    [Google Scholar]
  29. Stuknyte M, Guglielmetti S, Mora D, Kuisiene N, Parini C et al. Complete nucleotide sequence of pGS18, a 62.8-kb plasmid from Geobacillus stearothermophilus strain 18. Extremophiles 2008;12:415–429 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N et al. Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic Bacilli. Syst Appl Microbiol 1983;4:487–495 [CrossRef][PubMed]
    [Google Scholar]
  33. Burgess SA, Flint SH, Lindsay D, Cox MP, Biggs PJ. Insights into the Geobacillus stearothermophilus species based on phylogenomic principles. BMC Microbiol 2017;17:1–12 [CrossRef][PubMed]
    [Google Scholar]
  34. Golovacheva RS, Loginova LG, Salikhov TA, Kolesnikov AA, Zaĭtseva GN. [New species of thermophilic bacilli–Bacillus thermocatenulatus nov. sp]. Mikrobiologiia 1975;44:265–268[PubMed]
    [Google Scholar]
  35. Zarilla KA, Perry JJ. Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 1987;9:258–264 [CrossRef]
    [Google Scholar]
  36. White D, Sharp RJ, Priest FG. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie van Leeuwenhoek 1994;64:357–386 [CrossRef][PubMed]
    [Google Scholar]
  37. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E et al. Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 2000;50:1331–1337 [CrossRef][PubMed]
    [Google Scholar]
  38. Kämpfer P. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 1994;17:86–98 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003002
Loading
/content/journal/ijsem/10.1099/ijsem.0.003002
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error