1887

Abstract

An anaerobic Gram-stain-positive, non-spore-forming and non-motile bacterium isolated from the human gut, designated CG19-1, capable of cleaving aromatic C-glucosides was characterized using a polyphasic taxonomic approach. Major fermentation products of this asaccharolytic organism were acetate and butyrate when grown on a complex medium. Growth of strain CG19-1 was stimulated by glucose or pyruvate. Growth inhibition was observed in the presence of several phenolic acids including ferulic acid, which nevertheless was reduced to dihydroferulic acid. Strain CG19-1 contained peptidoglycan type A4β l-Orn–d-Asp. The major cellular fatty acids were C16 : 0 and C18 : 1ω9c. The genomic DNA G+C content was 47.1 mol%. Based on its 16S rRNA gene sequence, strain CG19-1 is a member of the Lachnospiraceae . However, sequence identity to other Lachnospiraceae species with validly published names is approximately 93.0 % with Frisingicoccus caecimuris being the most closely related species according to phylogenetic analysis. Based on these findings, it is proposed to create a novel genus, Catenibacillus, and a novel species, Catenibacillus scindens, with the type strain CG19-1 (=DSM 106146=CCUG 71490).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003001
2018-09-04
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3356.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003001&mimeType=html&fmt=ahah

References

  1. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65:330–339 [CrossRef][PubMed]
    [Google Scholar]
  2. Koppel N, Balskus EP. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem Biol 2016;23:18–30 [CrossRef][PubMed]
    [Google Scholar]
  3. Braune A, Blaut M. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ Microbiol 2011;13:482–494 [CrossRef][PubMed]
    [Google Scholar]
  4. Braune A, Engst W, Blaut M. Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol 2016;18:2117–2129 [CrossRef][PubMed]
    [Google Scholar]
  5. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:113–122 [CrossRef]
    [Google Scholar]
  6. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933;77:194 [CrossRef][PubMed]
    [Google Scholar]
  7. Kulaev IS, Vagabov VM, Kulakovskaja TV. The Biochemistry of Inorganic Polyphosphates New York: Wiley; 2004
    [Google Scholar]
  8. Slezak K, Hanske L, Loh G, Blaut M. Increased bacterial putrescine has no impact on gut morphology and physiology in gnotobiotic adolescent mice. Benef Microbes 2013;4:253–266 [CrossRef][PubMed]
    [Google Scholar]
  9. Macfarlane GT, Macfarlane S. Factors affecting fermentation reactions in the large bowel. Proc Nutr Soc 1993;52:367–373 [CrossRef][PubMed]
    [Google Scholar]
  10. Mechichi T, Labat M, Garcia JL, Thomas P, Patel BK. Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester. Int J Syst Bacteriol 1999;49:1741–1748 [CrossRef][PubMed]
    [Google Scholar]
  11. Lomans BP, Leijdekkers P, Wesselink JJ, Bakkes P, Pol A et al. Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl Environ Microbiol 2001;67:4017–4023 [CrossRef][PubMed]
    [Google Scholar]
  12. Braune A, Bunzel M, Yonekura R, Blaut M. Conversion of dehydrodiferulic acids by human intestinal microbiota. J Agric Food Chem 2009;57:3356–3362 [CrossRef][PubMed]
    [Google Scholar]
  13. Rodríguez H, Curiel JA, Landete JM, de Las Rivas B, López de Felipe F et al. Food phenolics and lactic acid bacteria. Int J Food Microbiol 2009;132:79–90 [CrossRef][PubMed]
    [Google Scholar]
  14. Sánchez-Maldonado AF, Schieber A, Gänzle MG. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 2011;111:1176–1184 [CrossRef][PubMed]
    [Google Scholar]
  15. Filannino P, Gobbetti M, de Angelis M, di Cagno R. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria. Appl Environ Microbiol 2014;80:7574–7582 [CrossRef][PubMed]
    [Google Scholar]
  16. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129
    [Google Scholar]
  17. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  18. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  19. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  20. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  21. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  23. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  24. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022–1023 [CrossRef][PubMed]
    [Google Scholar]
  25. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480–484 [CrossRef][PubMed]
    [Google Scholar]
  26. Jalanka-Tuovinen J, Salonen A, Nikkilä J, Immonen O, Kekkonen R et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 2011;6:e23035 [CrossRef][PubMed]
    [Google Scholar]
  27. Tap J, Mondot S, Levenez F, Pelletier E, Caron C et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009;11:2574–2584 [CrossRef][PubMed]
    [Google Scholar]
  28. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014;38:996–1047 [CrossRef][PubMed]
    [Google Scholar]
  29. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 2014;6:703–713 [CrossRef][PubMed]
    [Google Scholar]
  30. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  31. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  32. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006;7:439 [CrossRef][PubMed]
    [Google Scholar]
  33. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016;1:16131 [CrossRef][PubMed]
    [Google Scholar]
  34. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  35. Parshina SN, Kleerebezem R, Sanz JL, Lettinga G, Nozhevnikova AN et al. Soehngenia saccharolytica gen. nov., sp. nov. and Clostridium amygdalinum sp. nov., two novel anaerobic, benzaldehyde-converting bacteria. Int J Syst Evol Microbiol 2003;53:1791–1799 [CrossRef][PubMed]
    [Google Scholar]
  36. Cotta MA, Whitehead TR, Falsen E, Moore E, Lawson PA. Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 2009;59:150–155 [CrossRef][PubMed]
    [Google Scholar]
  37. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017;67:1219–1227 [CrossRef][PubMed]
    [Google Scholar]
  38. Holdeman LV, Cato EP, Moore WEC. Eubacterium contortum (Prevot) comb. nov.: emendation of description and designation of the type strain. Int J Syst Bacteriol 1971;21:304–306 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003001
Loading
/content/journal/ijsem/10.1099/ijsem.0.003001
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error