1887

Abstract

A non-fruiting group of myxobacteria was previously speculated to exist in nature based on metagenomics data containing uncultured members of the order Myxococcales. Here, we describe a myxobacterial strain, designated MCy10636, which was isolated from a German soil sample collected in 2013. It exhibits swarming characteristics but atypically produces myxospores in the absence of fruiting bodies. The novel strain stains Gram-negative and Congo-red-negative and is characterized mesophilic, neutrophilic, chemoheterotrophic and microaerotolerant. Branched-chain fatty acids are the predominant cellular fatty acids over the straight-chain type, and contain the major fatty acids iso-C17 : 0 2-OH, C16 : 1, iso-C17 : 0 and iso-C15 : 0. Based on blastn results, the 16S rRNA gene sequence reveals similarity (97 %) to Aggregicoccus edonensis MCy1366, (97 %) Myxococcus macrosporus DSM 14697, (96 %) Corallococcus coralloides DSM2259 and Corallococcus exiguus Cc e167. Phylogenetic analysis showed a novel lineage of MCy10636 in the family Myxococcaceae , suborder Cystobacterineae. Based on polyphasic taxonomic characterization, we propose that this unusual, non-fruiting, myxospore-forming and microaerotolerant myxobacterial strain, MCy10636, represents a novel genus and species, Simulacricoccus ruber gen. nov., sp. nov. (DSM 106554=NCCB 100651).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002936
2018-08-16
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3101.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002936&mimeType=html&fmt=ahah

References

  1. Garcia RO, Reichenbach H, Ring MW, Müller R. Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 2009;59:1524–1530 [CrossRef][PubMed]
    [Google Scholar]
  2. Shimkets LJ, Dworkin M, Reichenbach H. The myxobacteria. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed.vol. 7 New York: Springer; 2006; pp.31–115
    [Google Scholar]
  3. Jiang DM, Wu ZH, Zhao JY, Li YZ. Fruiting and non-fruiting myxobacteria: a phylogenetic perspective of cultured and uncultured members of this group. Mol Phylogenet Evol 2007;44:545–552 [CrossRef][PubMed]
    [Google Scholar]
  4. Garcia R, Müller R. The family Polyangiaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, 4th ed.vol. 10 Heidelberg: Springer; 2014; pp.247–279
    [Google Scholar]
  5. Garcia RO, Krug D, Müller R. Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Methods Enzymol 2009;458:59–91 [CrossRef][PubMed]
    [Google Scholar]
  6. Garcia R, Gemperlein K, Müller R. Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 2014;64:3733–3742 [CrossRef][PubMed]
    [Google Scholar]
  7. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  8. McCurdy HD. Studies on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. Can J Microbiol 1969;15:1453–1461 [CrossRef][PubMed]
    [Google Scholar]
  9. Garcia R, Stadler M, Gemperlein K, Müller R. Aetherobacter fasciculatus gen. nov., sp. nov. and Aetherobacter rufus sp. nov., novel myxobacteria with promising biotechnological applications. Int J Syst Evol Microbiol 2016;66:928–938 [CrossRef][PubMed]
    [Google Scholar]
  10. Iizuka T, Jojima Y, Hayakawa A, Fujii T, Yamanaka S et al. Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. Int J Syst Evol Microbiol 2013;63:1360–1369 [CrossRef][PubMed]
    [Google Scholar]
  11. Garcia R, Pistorius D, Stadler M, Müller R. Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 Fatty acids. J Bacteriol 2011;193:1930–1942 [CrossRef][PubMed]
    [Google Scholar]
  12. Gemperlein K, Rachid S, Garcia RO, Wenzel SC, Müller R. Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem Sci 2014;5:1733–1741 [CrossRef]
    [Google Scholar]
  13. Shimelis O, Giese RW. Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation. J Chromatogr A 2006;1117:132–136 [CrossRef][PubMed]
    [Google Scholar]
  14. Li G, Shimelis O, Zhou X, Giese RW. Scaled-down nuclease P1 for scaled-up DNA digestion. Biotechniques 2003;34:908–909[PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991; pp.115–175
    [Google Scholar]
  16. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  17. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000;7:203–214 [CrossRef][PubMed]
    [Google Scholar]
  18. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R et al. Database indexing for production MegaBLAST searches. Bioinformatics 2008;24:1757–1764 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  20. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  21. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  22. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  23. Lanave C, Preparata G, Saccone C, Serio G. A new method for calculating evolutionary substitution rates. J Mol Evol 1984;20:86–93 [CrossRef][PubMed]
    [Google Scholar]
  24. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985;22:160–174 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  26. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17:754–755 [CrossRef][PubMed]
    [Google Scholar]
  27. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  29. Drummond AJ, Ashton B, Buxton S, Cheung M, Heled J et al. 2010; Geneious pro 11.0.5. www.geneious.com
  30. Garcia R, Müller R. The family Myxococcaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, 4th ed.vol. 10 Heidelberg: Springer; 2014; pp.191–212
    [Google Scholar]
  31. Reichenbach H. Order VIII. Myxococcales Tchan, Pochon and Prévot 1948, 398AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2, part C New York: Springer; 2005; pp.1059–1072
    [Google Scholar]
  32. Reichenbach H, Dworkin M. The myxobacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed. Berlin: Springer; 1992; pp.3416–3487
    [Google Scholar]
  33. Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 2002;68:893–900 [CrossRef][PubMed]
    [Google Scholar]
  34. Yamamoto E, Muramatsu H, Nagai K. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int J Syst Evol Microbiol 2014;64:3360–3368 [CrossRef][PubMed]
    [Google Scholar]
  35. Sood S, Awal RP, Wink J, Mohr KI, Rohde M et al. Aggregicoccus edonensis gen. nov., sp. nov., an unusually aggregating myxobacterium isolated from a soil sample. Int J Syst Evol Microbiol 2015;65:745–753 [CrossRef][PubMed]
    [Google Scholar]
  36. Zh W, Jiang DM, Li P, Li Y. Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Env Microbiol 2005;7:1602–1610
    [Google Scholar]
  37. Garcia R, Gerth K, Stadler M, Dogma IJ, Müller R. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Mol Phylogenet Evol 2010;57:878–887 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002936
Loading
/content/journal/ijsem/10.1099/ijsem.0.002936
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error