1887

Abstract

A strictly aerobic Gram-stain-positive bacterial strain, designated IB-3, was isolated from a car air-conditioning system in the Republic of Korea. Cells were non-motile rods showing catalase- and oxidase-positive reactions. Growth of IB-3 was observed at 20–40 °C (optimum, 25 °C), at pH 6.5–9.0 (optimum, pH 7.5) and in the presence of 0–1 % (w/v) NaCl (optimum, 0 %). Menaquinone-8 (H4) was detected as the predominant respiratory quinone and iso-C16 : 0, 10-methyl-C17 : 0, iso-C17 : 0, C18 : 1ω9c, C17 : 1ω8c, C18 : 0, 10-methyl-C18 : 0 (TBSA) and C17 : 0 were identified as the major cellular fatty acids. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and phosphatidylinositol were detected as the major polar lipids. The major cell wall peptidoglycan type was ll-2,6-diaminopimelic acid. The G+C content of the genomic DNA was 71.5 mol%. IB-3 was most closely related to Nocardioides terrigena DS-17 with a 98.0 % 16S rRNA gene sequence similarity. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that IB-3 formed a distinct phylogenetic lineage within the genus Nocardioides of the family Nocardioidaceae . On the basis of the phenotypic, chemotaxonomic and molecular features, IB-3 represents a novel species of the genus Nocardioides , for which the name Nocardioides currus sp. nov. is proposed. The type strain is IB-3 (=KACC 19522=JCM 32672).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002933
2018-07-20
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2977.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002933&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976;26:58–65 [CrossRef]
    [Google Scholar]
  2. Yoon JH, Kang SJ, Lee SY, Oh TK. Nocardioides terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:2472–2475 [CrossRef][PubMed]
    [Google Scholar]
  3. Lu L, Cao M, Wang D, Yuan K, Zhuang W et al. Nocardioides immobilis sp. nov., isolated from iron mine soil. Int J Syst Evol Microbiol 2017;67:5230–5234 [CrossRef][PubMed]
    [Google Scholar]
  4. Wang Y, Xu D, Luo A, Wang G, Zheng S. Nocardioides litorisoli sp. nov., isolated from lakeside soil. Int J Syst Evol Microbiol 2017;67:4216–4220 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang DC, Schumann P, Redzic M, Zhou YG, Liu HC et al. Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012;62:445–450 [CrossRef][PubMed]
    [Google Scholar]
  6. Liu J, Li F, Gao CH, Han Y, Hao H et al. Nocardioides kandeliae sp. nov., an endophytic actinomycete isolated from leaves of Kandelia candel. Int J Syst Evol Microbiol 2017;67:3888–3893 [CrossRef][PubMed]
    [Google Scholar]
  7. Qu JH, Li XD, Li HF. Nocardioides taihuensis sp. nov., isolated from fresh water lake sediment. Int J Syst Evol Microbiol 2017;67:3535–3539 [CrossRef][PubMed]
    [Google Scholar]
  8. Wang S, Zhou Y, Zhang G. Nocardioides flavus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:5275–5280 [CrossRef][PubMed]
    [Google Scholar]
  9. Schippers A. Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 2005;55:1501–1504 [CrossRef]
    [Google Scholar]
  10. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Nocardioides aquiterrae sp. nov., isolated from groundwater in Korea. Int J Syst Evol Microbiol 2004;54:71–75 [CrossRef][PubMed]
    [Google Scholar]
  11. Khan IU, Hussain F, Habib N, Xiao M, Ahmed I et al. Nocardioides thalensis sp. nov., isolated from a desert. Int J Syst Evol Microbiol 2017;67:2848–2852 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008;74:7313–7320 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007;3:e56 [CrossRef][PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  16. Hyeon JW, Kim KH, Chun BH, Jeon CO. Pontibacterium granulatum gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:3784–3790 [CrossRef][PubMed]
    [Google Scholar]
  17. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18 [CrossRef][PubMed]
    [Google Scholar]
  18. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  19. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  20. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  21. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955;1:138–146
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  23. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–208
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002933
Loading
/content/journal/ijsem/10.1099/ijsem.0.002933
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error