1887

Abstract

A novel Gram-negative bacterium, designated 4G11, was isolated from the sea surface microlayer of a marine inlet. On the basis of 16S rRNA gene sequence analysis, the strain showed the closest similarity to Amylibacter ulvae KCTC 32465 (99.0 %). However, DNA–DNA hybridization values showed low DNA relatedness between strain 4G11 and its close phylogenetic neighbours, Amylibacter marinus NBRC 110140 (8.0±0.4 %) and Amylibacter ulvae KCTC 32465 (52.9±0.9 %). Strain 4G11 had C18 : 1, C16 : 0 and C18 : 2 as the major fatty acids. The only isoprenoid quinone detected for strain 4G11 was ubiquinone-10. The major polar lipids were phosphatidylglycerol, phosphatidylcholine, one unidentified polar lipid, one unidentified phospholipid and one unidentified aminolipid. The DNA G+C content of strain 4G11 was 50.0 mol%. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the novel strain should be assigned to a novel species, for which the name Amylibacter kogurei sp. nov. is proposed. The type strain of Amylibacter kogurei is 4G11 (KY463497=KCTC 52506=NBRC 112428).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002911
2018-07-17
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2872.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002911&mimeType=html&fmt=ahah

References

  1. Teramoto M, Nishijima M. Amylibacter marinus gen. nov., sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2014;64:4016–4020 [CrossRef][PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SB. Amylibacter ulvae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Ulva fenestrata. Arch Microbiol 2016;198:251–256 [CrossRef][PubMed]
    [Google Scholar]
  3. Wang D, Wei Y, Cui Q, Li W. Amylibacter cionae sp. nov., isolated from the sea squirt Ciona savignyi. Int J Syst Evol Microbiol 2017;67:3462–3466 [CrossRef][PubMed]
    [Google Scholar]
  4. Liss PS, Duce RA. The Sea Surface and Global Change Cambridge: Cambridge University Press; 2005
    [Google Scholar]
  5. Franklin MP, McDonald IR, Bourne DG, Owens NJ, Upstill-Goddard RC et al. Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass. Environ Microbiol 2005;7:723–736 [CrossRef][PubMed]
    [Google Scholar]
  6. Cunliffe M, Schäfer H, Harrison E, Cleave S, Upstill-Goddard R et al. Phylogenetic and functional gene analysis of the bacterial and archaeal communities associated with the surface microlayer of an estuary. ISME J 2008;2:776–789 [CrossRef][PubMed]
    [Google Scholar]
  7. Harvey GW. Microlayer collection from the sea surface: a new method and initial results. Limnol Oceanogr 1966;11:608–613 [CrossRef]
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  10. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2016;44:D67–D72 [CrossRef][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1987;20:406–416 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  18. Ezaki T, Hashimoto Y, Yamamoto H, Lucida ML, Liu SL et al. Evaluation of the microplate hybridization method for rapid identification of Legionella species. Eur J Clin Microbiol Infect Dis 1990;9:213–217 [CrossRef][PubMed]
    [Google Scholar]
  19. Børsheim KY, Bratbak G, Heldal M. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 1990;56:352–356[PubMed]
    [Google Scholar]
  20. Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 2003;57:249–273 [CrossRef][PubMed]
    [Google Scholar]
  21. Atlas RM. In Parks LC. (editor) Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  22. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  23. Sakazaki R, Miki K, Yoshizaki E. New Bacterial Culture Media Tokyo, Japan: Kindai Shuppan; 1995
    [Google Scholar]
  24. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  25. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  26. Kawamura Y. Methods for bacterial classification and identification. The textbook for the 18th technical training course of the Japanese Society for Bacteriology. Jpn Soc Bacteriol 2000;55:545–584
    [Google Scholar]
  27. Suzuki K. DNA-DNA hybridization. In Suzuki K, Hiraishi A, Yokota A. (editors) Experimental Techniques for the Classification and Identification of Microorganisms Tokyo: Springer-Verlag; 2001
    [Google Scholar]
  28. Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 1984;48:3169–3172 [CrossRef]
    [Google Scholar]
  29. Wong SK, Yoshizawa S, Nakajima Y, Ogura Y, Hayashi T et al. Draft genome sequence of Lewinella sp. strain 4G2 isolated from the coastal sea surface microlayer. Genome Announc 2016;4:e00754-16 [CrossRef][PubMed]
    [Google Scholar]
  30. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014;24:1384–1395 [CrossRef][PubMed]
    [Google Scholar]
  31. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S et al. Prokaryotic genome annotation pipeline. In The NCBI Handbook, 2nd ed. NCBI, Bethesda: MD; 2013
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002911
Loading
/content/journal/ijsem/10.1099/ijsem.0.002911
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error