1887

Abstract

A Gram-negative, rod-shaped and motile bacterium, designated strain J95, was isolated from the rhizosphere soil of a mangrove plant Kandeliacandel (L.) Druce in Mai Po Nature Reserve, Hong Kong. Growth of strain J95 was observed at pH 5.0–8.5 (optimum, 6.0–7.0), between 10–40 °C (30–37 °C) and in the presence of 0–9 % (w/v) NaCl (0.5–3 %). Chemotaxonomic analysis showed ubiquinone-10 as the predominant respiratory quinone and C18 : 1ω7c and C19 : 0 cycloω8c as the major fatty acids. The major polar lipids were lipid, aminolipid, phospholipid, phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The genomic contained a circular chromosome of 5.48 Mb with a DNA G+C content of 65.7 mol%. The genome included 5299 genes. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain J95 belongs to the genus Ruegeria with highest sequence similarity (96.8 %) to the type strain Ruegeria marina ZH17. The combined phenotypic, chemotaxonomic and phylogenetic data suggested that strain J95 represents a novel species of the genus Ruegeria , for which the name Ruegeria kandeliae sp. nov. is proposed. The type strain is J95 (=MCCC 1K03284=DSM 104293).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002894
2018-06-27
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2653.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002894&mimeType=html&fmt=ahah

References

  1. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998;44:201–210 [CrossRef][PubMed]
    [Google Scholar]
  2. Arahal DR, Macián MC, Garay E, Pujalte MJ. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 2005;55:2371–2376 [CrossRef][PubMed]
    [Google Scholar]
  3. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006;56:1293–1304 [CrossRef][PubMed]
    [Google Scholar]
  4. Petursdottir SK, Kristjansson JK. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1997;1:94–99 [CrossRef][PubMed]
    [Google Scholar]
  5. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003;53:1261–1269 [CrossRef][PubMed]
    [Google Scholar]
  6. Yi H, Lim YW, Chun J. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 2007;57:815–819 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee K, Choo YJ, Giovannoni SJ, Cho JC. Ruegeria pelagia sp. nov., isolated from the Sargasso Sea, Atlantic Ocean. Int J Syst Evol Microbiol 2007;57:1815–1818 [CrossRef][PubMed]
    [Google Scholar]
  8. Lai Q, Yuan J, Li F, Zheng T, Shao Z. Ruegeria pelagia is a later heterotypic synonym of Ruegeria mobilis. Int J Syst Evol Microbiol 2010;60:1918–1920 [CrossRef][PubMed]
    [Google Scholar]
  9. Muramatsu Y, Uchino Y, Kasai H, Suzuki K, Nakagawa Y. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 2007;57:1304–1309 [CrossRef][PubMed]
    [Google Scholar]
  10. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M et al. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2008;58:2726–2733 [CrossRef][PubMed]
    [Google Scholar]
  11. Huo YY, Xu XW, Li X, Liu C, Cui HL et al. Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011;61:347–350 [CrossRef][PubMed]
    [Google Scholar]
  12. Oh KH, Jung YT, Oh TK, Yoon JH. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2011;61:1182–1188 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim YO, Park S, Nam BH, Kang SJ, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2012;62:925–930 [CrossRef][PubMed]
    [Google Scholar]
  14. Park S, Yoon JH. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 2012;102:581–589 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee J, Whon TW, Shin NR, Roh SW, Kim J et al. Ruegeria conchae sp. nov., isolated from the ark clam Scapharca broughtonii. Int J Syst Evol Microbiol 2012;62:2851–2857 [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P, Arun AB, Rekha PD, Busse HJ, Young CC et al. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2013;63:2538–2544 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie van Leeuwenhoek 2014;105:551–558 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhang G, Haroon MF, Zhang R, Dong X, Wang D et al. Ruegeria profundi sp. nov. and Ruegeria marisrubri sp. nov., isolated from the brine-seawater interface at Erba Deep in the Red Sea. Int J Syst Evol Microbiol 2017;67:4624–4631 [CrossRef][PubMed]
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  20. Xu Y, Li Q, Tian R, Lai Q, Zhang Y. Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie van Leeuwenhoek 2015;108:127–132 [CrossRef][PubMed]
    [Google Scholar]
  21. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017;67:909–913 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  25. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  26. Rzhetsky A, Nei M. A simple method for evaluating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  28. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  29. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  30. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  31. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  32. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria By Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Kates M. Techniques of Lipidology, 2nd ed. rev. Amsterdam: Elsevier; 1986; pp.106241–107246
    [Google Scholar]
  35. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992;42:133–143 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002894
Loading
/content/journal/ijsem/10.1099/ijsem.0.002894
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error