1887

Abstract

The genus includes morphotypes with thin cells and simple morphology, and is one of the most common cyanobacterial genera found in a wide range of environments. In many cases, however, the morphotypes assigned to this genus do not share a common ancestor based on 16S rRNA gene phylogeny, which has led to the description of novel genera, such as , , , , , and Thus, four novel isolates, with a comparable morphology to , were recovered from the Amazon and Solimões rivers. The novel 16S rRNA gene sequences obtained from these strains were placed together as a new and distinct phylogenetic lineage that is more closely related to the clusters embracing the genera , and than to the genus . Additionally, these novel 16S rRNA gene sequences showed similarity values lower than 95 % compared with those from the most phylogenetic related groups and/or established genera. Altogether, these results supported the erection of a novel genus, named , to accommodate the novel isolates. Likewise, a comparison of their 16S rRNA gene sequences revealed similarities higher than 99.8 %, indicating that they belong to a single species, which was corroborated by analysing their 16S–23S internal transcribed spacer regions and unique Box-B helix pattern. Few studies have been undertaken to uncover the cultured diversity of cyanobacteria from Amazonia, and to our knowledge, this is the first cyanobacteria genus erected, considering morphotypes isolated exclusively from Brazilian Amazonian rivers.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002821
2018-07-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2249.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002821&mimeType=html&fmt=ahah

References

  1. Sciuto K, Moro I. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Mol Phylogenet Evol 2016;105:15–35 [CrossRef][PubMed]
    [Google Scholar]
  2. Komárek J, Anagnostidis K. Cyanoprokaryota 2.Teil: Oscillatoriales. In Büdel B, Krienitz L, Gärtner G, Schagerl M. (editors) Süsswasserflora von Mitteleuropa Munique: Elsevier; 2005; pp.1–759
    [Google Scholar]
  3. Komárek J. Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Pol Polar Res 2007;28:211–231
    [Google Scholar]
  4. Johansen JR, Kovacik L, Casamatta DA, Iková KF, Kaštovský J. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 2011;92:283–302 [CrossRef]
    [Google Scholar]
  5. Vieira Vaz MG, Genuário DB, Andreote AP, Malone CF, Sant'anna CL et al. Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. Int J Syst Evol Microbiol 2015;65:298–308 [CrossRef][PubMed]
    [Google Scholar]
  6. Casamatta DA, Johansen JR, Vis ML, Broadwater ST. Molecular and ultrastructural characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 2005;41:421–438 [CrossRef]
    [Google Scholar]
  7. Silva CS, Genuário DB, Vaz MG, Fiore MF. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 2014;37:100–112 [CrossRef][PubMed]
    [Google Scholar]
  8. Andreote AP, Vaz MG, Genuário DB, Barbiero L, Rezende-Filho AT et al. Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. J Phycol 2014;50:675–684 [CrossRef][PubMed]
    [Google Scholar]
  9. Perkerson RB, Johansen JR, Kovácik L, Brand J, Kaštovský J et al. A unique Pseudanabaenalean (Cyanobacteria) genus Nodosolinea gen. nov. based on morphological and molecular data. J Phycol 2011;47:1397–1412 [CrossRef][PubMed]
    [Google Scholar]
  10. Zammit G, Billi D, Albertano P. The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov. : a cytomorphological and molecular description. Eur J Phycol 2012;47:341–354 [CrossRef]
    [Google Scholar]
  11. Song G, Jiang Y, Li R. Scytolyngbya timoleontis, gen. et sp. nov. (Leptolyngbyaceae, Cyanobacteria): a novel false branching Cyanobacteria from China. Phytotaxa 2015;224:72–84 [CrossRef]
    [Google Scholar]
  12. Taton A, Wilmotte A, Šmarda J, Elster J, Komárek J. Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes. Polar Biol 2011;34:181–191 [CrossRef]
    [Google Scholar]
  13. Jahodářová EVA, Dvořák P, Hašler P, Poulíčková A. Revealing hidden diversity among tropical cyanobacteria: the new genus Onodrimia (Synechococcales, Cyanobacteria) described using the polyphasic approach. Phytotaxa 2017;326:28–40 [CrossRef]
    [Google Scholar]
  14. Sciuto K, Moschin E, Moro I. Cryptic cyanobacterial diversity in the giant cave (Trieste, Italy): the new genus Timaviella (Leptolyngbyaceae). Cryptogamie, Algologie 2017;38:285–323 [CrossRef]
    [Google Scholar]
  15. Zimba PV, Huang IS, Foley JE, Linton EW. Identification of a new-to-science cyanobacterium, Toxifilum mysidocida gen. nov. & sp. nov. (Cyanobacteria, Cyanophyceae). J Phycol 2017;53:188–197 [CrossRef][PubMed]
    [Google Scholar]
  16. Fiore MF, Neilan BA, Copp JN, Rodrigues JL, Tsai SM et al. Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Res 2005;39:5017–5026 [CrossRef][PubMed]
    [Google Scholar]
  17. Genuário DB, Vaz M, Melo IS. Phylogenetic insights into the diversity of homocytous cyanobacteria from Amazonian rivers. Mol Phylogenet Evol 2017;116:120–135 [CrossRef][PubMed]
    [Google Scholar]
  18. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 1971;35:171–205[PubMed]
    [Google Scholar]
  19. Rippka R. Isolation and purification of cyanobacteria. Methods Enzymol 1988;167:3–27[PubMed]
    [Google Scholar]
  20. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacteria genera) 2014, using a polyphasic approach. Preslia 2014;86:295–335
    [Google Scholar]
  21. Neilan BA, Jacobs D, del Dot T, Blackall LL, Hawkins PR et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 1997;47:693–697 [CrossRef][PubMed]
    [Google Scholar]
  22. Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003;69:5157–5169 [CrossRef][PubMed]
    [Google Scholar]
  23. Genuário DB, Corrêa DM, Komárek J, Fiore MF. Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. J Phycol 2013;49:1142–1153 [CrossRef][PubMed]
    [Google Scholar]
  24. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998;8:186–194 [CrossRef][PubMed]
    [Google Scholar]
  25. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998;8:175–185 [CrossRef][PubMed]
    [Google Scholar]
  26. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998;8:195–202 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003;19:1572–1574 [CrossRef][PubMed]
    [Google Scholar]
  29. Nylander JAA. MrModeltest 2.3. Program Distributed by the Author Evolutionary Biology Centre, Uppsala University; 2004
    [Google Scholar]
  30. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 2007;3:e65 [CrossRef][PubMed]
    [Google Scholar]
  31. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 2012;18:900–914 [CrossRef][PubMed]
    [Google Scholar]
  32. Smith C, Heyne S, Richter AS, Will S, Backofen R. Freiburg RNA tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 2010;38:W373–W377 [CrossRef][PubMed]
    [Google Scholar]
  33. Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016;44:W54–W57 [CrossRef][PubMed]
    [Google Scholar]
  34. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  36. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998;19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  37. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  38. Dadheech PK, Mahmoud H, Kotut K, Krienitz L. Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya. Hydrobiologia 2012;691:269–283 [CrossRef]
    [Google Scholar]
  39. Abed RM, Garcia-Pichel F, Hernández-Mariné M. Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronema excentricum gen. nov., sp. nov. Arch Microbiol 2002;177:361–370 [CrossRef][PubMed]
    [Google Scholar]
  40. Burger-Wiersma T, Stal LJ, Mur LR. Prochlorthrix hollandica gen. nov. sp. nov., a filamentous oxygenic photoautotrophic procaryote containing chlorophylls a and b: assignment to Prochlorotrichaceae fam. nov. and order Prochlorales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description. Int J Syst Bacteriol 1989;39:250–257 [CrossRef]
    [Google Scholar]
  41. Komárek J, Hauer T. 2013; CyanoDB.cz – On-line database of cyanobacterial genera. – Word-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR. www.cyanodb.cz Accessed in 28 December 2017
  42. Meffert ME. Limnothrix Meffert nov. gen.-the unsheathed planktic cyanophycean filaments with polar and central gas vacuoles. Algol Stud 1988;50-53:269–276
    [Google Scholar]
  43. Azevedo S, Magalhães VF. Causes and consequences of the presence of toxic cyanobacteria in Brazilian ecosystems. In Sar EA, Ferrario ME, Reguera B. (editors) Harmful Algal Blooms in South America Madrid: Spanish Institute of Oceanography; 2002; pp.226–228
    [Google Scholar]
  44. Richardson LL, Sekar R, Myers JL, Gantar M, Voss JD et al. The presence of the cyanobacterial toxin microcystin in black band disease of corals. FEMS Microbiol Lett 2007;272:182–187 [CrossRef][PubMed]
    [Google Scholar]
  45. Mohamed ZA, Al Shehri AM. Microcystin production in epiphytic cyanobacteria on submerged macrophytes. Toxicon 2010;55:1346–1352 [CrossRef][PubMed]
    [Google Scholar]
  46. Furtado A, Calijuri MC, Lorenzi AS, Honda RY, Genuário DB et al. Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia 2009;627:195–209 [CrossRef]
    [Google Scholar]
  47. Genuário DB, Lorenzi AS, Agujaro LF, Isaac Rdel, Azevedo MT et al. Cyanobacterial community and microcystin production in a recreational reservoir with constant Microcystis blooms. Hydrobiologia 2016;779:105–125 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002821
Loading
/content/journal/ijsem/10.1099/ijsem.0.002821
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error