1887

Abstract

A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated OITF-44, was isolated from a tidal flat in Oido, an island of the Republic of Korea. Strain OITF-44 grew optimally at 25 °C and in the presence of 2.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain OITF-44 formed an independent lineage within the clade comprising the genera Lutimonas , Taeania , Actibacter and Namhaeicola . The novel strain exhibited 16S rRNA gene sequence similarity values of 93.9–95.7 % to the type strains of the species of the genera Lutimonas , Taeania , Actibacter and Namhaeicola , and of less than 93.5 % to the type strains of other recognized species. Strain OITF-44 contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G, iso-C16 : 1 H and iso-C16 : 0 3-OH as the major fatty acids. The major polar lipids of strain OITF-44 were phosphatidylethanolamine, one unidentified lipid and one unidentified phospholipid. The DNA G+C content of strain OITF-44 was 33.9 mol%. The chemotaxonomic data and other differential phenotypic properties made it reasonable to distinguish strain OITF-44 from the type strains of the type species of the genera Lutimonas , Taeania , Actibacter and Namhaeicola . On the basis of the data presented here, strain OITF-44 is considered to constitute a new genus and species within the family Flavobacteriaceae , for which the name Aestuariimonas insulae gen. nov., sp. nov. is proposed. The type strain of Aestuariimonas insulae is OITF-44 (=KACC 19569=KCTC 62197=DSM 105891=NBRC 113118).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002684
2018-03-05
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1365.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002684&mimeType=html&fmt=ahah

References

  1. Yoon JH, Kang SJ, Jung YT, Oh TK. Aestuariicola saemankumensis gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from tidal flat sediment. Int J Syst Evol Microbiol 2008; 58: 2126– 2131 [CrossRef] [PubMed]
    [Google Scholar]
  2. Jung YT, Lee JS, Yoon JH. Hwangdonia seohaensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2013; 63: 3186– 3191 [CrossRef] [PubMed]
    [Google Scholar]
  3. Park S, Ha MJ, Jung YT, Kang CH, Yoon JH. Tenacibaculum sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66: 2610– 2616 [CrossRef] [PubMed]
    [Google Scholar]
  4. Park S, Jung YT, Won SM, Yoon JH. Maribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66: 4236– 4242 [CrossRef] [PubMed]
    [Google Scholar]
  5. Park S, Yoon SY, Ha MJ, Jung YT, Yoon JH. Lutibacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67: 583– 588 [CrossRef] [PubMed]
    [Google Scholar]
  6. Park S, Ha MJ, Yoon SY, Jung YT, Yoon JH. Nonlabens aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67: 1535– 1539 [CrossRef] [PubMed]
    [Google Scholar]
  7. Park S, Yoon SY, Ha MJ, Yoon JH. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67: 2036– 2042 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jung YT, Yoon SY, Lee JS, Yoon JH. Taeania maliponensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2016; 66: 3552– 3557 [CrossRef] [PubMed]
    [Google Scholar]
  9. Jung YT, Kim JH, Kang SJ, Oh TK, Yoon JH. Namhaeicola litoreus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2012; 62: 2163– 2168 [CrossRef] [PubMed]
    [Google Scholar]
  10. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64: 2969– 2974 [CrossRef] [PubMed]
    [Google Scholar]
  11. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  12. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  13. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51: 1997– 2006 [CrossRef] [PubMed]
    [Google Scholar]
  14. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993; [Crossref]
    [Google Scholar]
  15. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  16. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992; pp. 3631– 3675
    [Google Scholar]
  17. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp. 1302– 1331
    [Google Scholar]
  18. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49: 25– 68 [CrossRef] [PubMed]
    [Google Scholar]
  19. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95: 1921– 1942 [PubMed]
    [Google Scholar]
  20. Yoon JH, Kim H, Kim SB, Kim HJ, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46: 502– 505 [CrossRef]
    [Google Scholar]
  21. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47: 111– 114 [CrossRef]
    [Google Scholar]
  22. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53: 53– 57 [CrossRef] [PubMed]
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  24. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp. 106– 111
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Hyun DW, Kim JY, Kim MS, Shin NR, Kim HS et al. Actibacter haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter. Int J Syst Evol Microbiol 2015; 65: 49– 55 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Description of Lutimonas halocynthiae sp. nov., isolated from a golden sea squirt (Halocynthia aurantium), reclassification of Aestuariicola saemankumensis as Lutimonas saemankumensis comb. nov. and emended description of the genus Lutimonas. Int J Syst Evol Microbiol 2014; 64: 1984– 1990 [CrossRef] [PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley and Sons; 1994; pp. 121– 161
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  31. Kim JH, Kim KY, Hahm YT, Kim BS, Chun J et al. Actibacter sediminis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment. Int J Syst Evol Microbiol 2008; 58: 139– 143 [CrossRef] [PubMed]
    [Google Scholar]
  32. Yang SJ, Choo YJ, Cho JC. Lutimonas vermicola gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine polychaete Periserrula leucophryna. Int J Syst Evol Microbiol 2007; 57: 1679– 1684 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002684
Loading
/content/journal/ijsem/10.1099/ijsem.0.002684
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error