1887

Abstract

The original description of Arthrobacter nasiphocae M597/99/10 demonstrated that it is distantly related to the type species of the genus Arthrobacter, Arthrobacter globiformis, and that this phylogenetic relationship is reflected by the distinct peptidoglycan type [Lys-Ala2-Gly2-3-Ala(Gly)] and the features of the quinone system, which is composed of menaquinones MK-9(H2) and MK-8(H2). Here, we report a re-evaluation of the taxonomic status of A. nasiphocae. Phylogenetically, it was observed to be only distantly related to the genus Arthrobacter and to the type species of related genera. Re-analysis confirmed the quinone system menaquinones MK-9(H2) and MK-8(H2) in A. nasiphocae. Analysis of cell polar lipids showed a profile consisting of the predominant lipids diphosphatidylglycerol, phosphatidylglycerol, dimannosylglyceride, an unidentified phospholipid and an unidentified aminophosphoglycolipid, and several minor unidentified lipids. This profile clearly is different from that of Arthrobacter species. The cell fatty acid profile also showed characteristics that distinguished A. nasiphocae from Arthrobacter species. The phylogenetic distance of A. nasiphocae from any type species of genera within the family Micrococcaceae and the distinct chemotaxonomic traits warrant the reclassification of A. nasiphocae within a novel genus, for which we propose the name Falsarthrobacter nasiphocae gen. nov., comb. nov. The type strain is M597/99/10 (=CCUG 42953=CIP 107054=DSM 13988=JCM 11677).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002680
2018-03-05
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1361.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002680&mimeType=html&fmt=ahah

References

  1. Collins MD, Hoyles L, Foster G, Falsen E, Weiss N. Arthrobacter nasiphoceae sp. nov., from the common seal (Phoca vitulina). Int J Syst Evol Microbiol 2002; 52: 569– 571 [CrossRef] [PubMed]
    [Google Scholar]
  2. Busse H-J, Wieser M, Buczolits S. Genus III. Arthrobacter. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo MA, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp. 578– 624 [Crossref]
    [Google Scholar]
  3. Busse H-J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus.. Int J Syst Evol Microbiol 2016; 66: 9– 37 [CrossRef] [PubMed]
    [Google Scholar]
  4. Schumann P, Busse H-J. Reclassification of Arthrobacter sanguinis (Mages et al. 2009) as Haematomicrobium sanguinis gen. nov., comb. nov. Int J Syst Evol Microbiol 2017; 67: 1052– 1057 [CrossRef] [PubMed]
    [Google Scholar]
  5. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  6. Altenburger P, Kämpfer P, Akimov VN, Lubitz W, Busse H-J. Polyamine distribution in actinomycetes with Group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 1997; 47: 270– 277 [CrossRef]
    [Google Scholar]
  7. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  8. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  9. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  10. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47: 39– 52 [CrossRef]
    [Google Scholar]
  11. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57: 572– 576 [CrossRef] [PubMed]
    [Google Scholar]
  12. Altenburger P, Kämpfer P, Schumann P, Steiner R, Lubitz W et al. Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 2002; 52: 2095– 2100 [CrossRef] [PubMed]
    [Google Scholar]
  13. Hu QW, Chu X, Xiao M, Li CT, Yan ZF et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66: 2035– 2040 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lee JY, Hyun DW, Soo Kim P, Sik Kim H, Shin NR et al. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2016; 66: 1887– 1893 [CrossRef] [PubMed]
    [Google Scholar]
  15. Krishnan R, Menon RR, Tanaka N, Busse H-J, Krishnamurthi S et al. Arthrobacter pokkalii sp nov, a novel plant associated actinobacterium with plant beneficial properties, isolated from saline tolerant pokkali rice, Kerala, India. PLoS One 2016; 11: e0150322 [CrossRef] [PubMed]
    [Google Scholar]
  16. Huang Z, Bao YY, Yuan TT, Wang GX, He LY et al. Arthrobacter nanjingensis sp. nov., a mineral-weathering bacterium isolated from forest soil. Int J Syst Evol Microbiol 2015; 65: 365– 369 [CrossRef] [PubMed]
    [Google Scholar]
  17. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI, Inc; 2001; www.microbialid.com/PDF/TechNote_101.pdf
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  20. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  21. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.695 Seattle, WA: Department of Genome Sciences, University of Washington; 2013
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a Specific Tree Topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002680
Loading
/content/journal/ijsem/10.1099/ijsem.0.002680
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error