1887

Abstract

A novel Gram-stain-negative bacterium, designated strain S8, was isolated from a soil sample obtained in Gyeonggi Province, Republic of Korea. Cells of strain S8 were endospore-forming, motile by means of peritrichous flagella, and rod-shaped. S8 colonies were round, convex, wavy and white. Strain S8 grew optimally at 37 °C, pH 6–8, and up to 2.0 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain S8 was affiliated with the genus in the family and was most closely related to DCY84 and XB (98.8 and 97.1 % sequence similarity). The DNA G+C content of the novel strain was 53.1±0.3 mol%. Strain S8 contained diphosphatidylglycerol, phosphatidylglycerol, two phospholipids, four aminophospholipids, an aminolipid and three unidentified lipids. The major fatty acid was anteiso-branched C. The quinone was menaquinone MK-7. The peptidoglycan of strain S8 contained -diaminopimelic acid. The DNA–DNA hybridization values of strain S8 with KCTC 33428 and DSM 29851 were 44 % and 32 %, respectively. Data from the DNA–DNA hybridization, biochemical, phylogenetic and physiological analyses indicate that strain S8 (=KCTC 33848=JCM 31672) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002643
2018-04-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1140.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002643&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed][Crossref]
    [Google Scholar]
  2. Priest FG. Genus I. Paenibacillus. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 3 New York: Springer; 2009; pp.269–327
    [Google Scholar]
  3. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  5. Hall TB. BioEdit. Biological Sequence Alignment Editor for Win 95/98/NT/2K/XP Carlsbad, CA: Ibis Therapeutics; 1997
    [Google Scholar]
  6. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  7. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  11. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  12. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994
    [Google Scholar]
  13. Cowan ST, Steel KJ. Manual for the identification of medical bacteria, 3rd ed. Cambridge: University Press, Cambridge; 1974
    [Google Scholar]
  14. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496[PubMed][Crossref]
    [Google Scholar]
  15. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  16. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–205[Crossref]
    [Google Scholar]
  17. Huang Z, Dai W, Zhou Z, Wang G, Lin G et al. Paenibacillus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:243–247 [CrossRef][PubMed]
    [Google Scholar]
  18. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  19. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  20. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  21. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985;18:123–156[Crossref]
    [Google Scholar]
  22. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J et al. Short protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  23. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  24. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  25. Gillis M, De Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970;12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  26. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 2011;57:250–255 [CrossRef][PubMed]
    [Google Scholar]
  27. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012;62:1284–1288 [CrossRef][PubMed]
    [Google Scholar]
  28. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez JC et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015;65:4621–4626 [CrossRef][PubMed]
    [Google Scholar]
  29. Roux V, Raoult D. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 2004;54:1049–1054 [CrossRef][PubMed]
    [Google Scholar]
  30. Sukweenadhi J, Kim YJ, Lee KJ, Koh SC, Hoang VA et al. Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest. Antonie van Leeuwenhoek 2014;106:935–945 [CrossRef][PubMed]
    [Google Scholar]
  31. Benardini JN, Vaishampayan PA, Schwendner P, Swanner E, Fukui Y et al. Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. Int J Syst Evol Microbiol 2011;61:1338–1343 [CrossRef][PubMed]
    [Google Scholar]
  32. Osman S, Satomi M, Venkateswaran K. Paenibacillus pasadenensis sp. nov. and Paenibacillus barengoltzii sp. nov., isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 2006;56:1509–1514 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhou X, Nan Guo G, Qi Wang L, Lan Bai S, Li Li C et al. Paenibacillus physcomitrellae sp. nov., isolated from the moss Physcomitrella patens. Int J Syst Evol Microbiol 2015;65:3400–3406 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002643
Loading
/content/journal/ijsem/10.1099/ijsem.0.002643
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error