1887

Abstract

Strain SYSU D8004 was isolated from a sample collected from an arid area in Saudi Arabia. The isolate was Gram-stain-positive, non-motile, aerobic and non-spore-forming. It could grow at 4–45 °C, at pH 6.0–10.0 and in the presence of up to 17 % (w/v) NaCl. Pairwise comparison of the 16S rRNA gene sequences indicated that strain SYSU D8004 shared highest sequence similarity with YIM 93316 (96.5 %). Menaquinone MK-8(H) was detected as the respiratory quinone. The polar lipid profile of strain SYSU D8004 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two phosphatidylinositol mannosides, two unidentified phospholipids and an unidentified glycolipid. Strain SYSU D8004 contained anteiso-C, iso-C and C as the predominant fatty acids (>10 %). Galactose, glucose and rhamnose were detected as whole-cell sugars. Based on analyses of the phenotypic, genotypic and phylogenetic characteristics, it was determined that strain SYSU D8004 could be differentiated from other closely related members of the genus . Strain SYSU D8004 is therefore considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SYSU D8004 (=CGMCC 1.15793=KCTC 39987).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002640
2018-04-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1135.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002640&mimeType=html&fmt=ahah

References

  1. Altenburger P, Kämpfer P, Schumann P, Vybiral D, Lubitz W et al. Georgenia muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 2002;52:875–881 [CrossRef][PubMed]
    [Google Scholar]
  2. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  3. Hamada M, Tamura T, Ishida Y, Suzuki K. Georgenia thermotolerans sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 2009;59:1875–1879 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P, Arun AB, Busse HJ, Langer S, Young CC et al. Georgenia soli sp. nov., isolated from iron-ore-contaminated soil in India. Int J Syst Evol Microbiol 2010;60:1027–1030 [CrossRef][PubMed]
    [Google Scholar]
  5. Tang SK, Wang Y, Lee JC, Lou K, Park DJ et al. Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010;60:1317–1421 [CrossRef][PubMed]
    [Google Scholar]
  6. Srinivas A, Rahul K, Sasikala C, Subhash Y, Ramaprasad EV et al. Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012;62:2405–2409 [CrossRef][PubMed]
    [Google Scholar]
  7. Woo SG, Cui Y, Kang MS, Jin L, Kim KK et al. Georgenia daeguensis sp. nov., isolated from 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 2012;62:1703–1709 [CrossRef][PubMed]
    [Google Scholar]
  8. You ZQ, Li J, Qin S, Tian XP, Wang FZ et al. Georgenia sediminis sp. nov., a moderately thermophilic actinobacterium isolated from sediment. Int J Syst Evol Microbiol 2013;63:4243–4247 [CrossRef][PubMed]
    [Google Scholar]
  9. Wang S, Xu X, Wang L, Jiao K, Zhang G. Georgenia subflava sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2015;65:4146–4150 [CrossRef][PubMed]
    [Google Scholar]
  10. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012;102:297–305 [CrossRef][PubMed]
    [Google Scholar]
  11. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  12. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960;[Crossref]
    [Google Scholar]
  13. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012;62:2650–2656 [CrossRef][PubMed]
    [Google Scholar]
  14. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  15. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  16. McFaddin JF. Biochemical Tests for Identification of Medical Bacteria NY, US: Williams & Wilkins Co; 1976
    [Google Scholar]
  17. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986;123:31–36[PubMed]
    [Google Scholar]
  20. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  21. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  22. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:16
    [Google Scholar]
  23. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  24. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  25. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz TDW. (editor) Actinomycete Taxonomy Special Publication no 6 Arlington, VA: Society for Industrial Microbiology; 1980; pp.227–291
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  27. Liu YH, Guo JW, Salam N, Li L, Zhang YG et al. Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech 2016;6:209 [CrossRef][PubMed]
    [Google Scholar]
  28. Yang ZW, Salam N, Hua ZS, Liu BB, Han MX et al. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2017;67:4862–4867 [CrossRef][PubMed]
    [Google Scholar]
  29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1618 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  37. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1984
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002640
Loading
/content/journal/ijsem/10.1099/ijsem.0.002640
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error