1887

Abstract

A strictly anaerobic, Gram-stain-positive, non-motile and coccoid- or oval-shaped bacterium, designated strain KB1, was isolated from a faecal sample of a patient with diverticulitis in South Korea. Degeneracies in the 16S rRNA gene sequence of strain KB1 were resolved by cloning, which yielded five different sequences with heterogeneity. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain KB1 formed a monophyletic branch with species in the genus Blautia , with highest sequence similarity to the type strain of Blautia producta (97.7–98.9 %), followed by Blautia coccoides (97.5–98.1 %). Strain KB1 was able to grow at temperatures of between 15 and 42 °C, with optimal growth at 37 °C, and in the presence of 20 % dehydrated bile. Acetic acid, succinic acid, lactic acid and fumaric acid were produced by strain KB1 from Gifu anaerobic medium broth as metabolic fermentation end-products. The major cellular fatty acids of strain KB1 were C14 : 0, C16 : 0 and C16 : 0 dimethyl aldehyde. The DNA G+C content was 46.3 mol%. The average nucleotide identity value between strain KB1 and the type strain of B. producta was 84.1 %. On the basis of polyphasic analysis, strain KB1 represents a novel species in the genus Blautia , for which the name Blautia hominis sp. nov. is proposed. The type strain is KB1 (=KCTC 15618=JCM 32276).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002623
2018-02-09
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1059.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002623&mimeType=html&fmt=ahah

References

  1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220– 230 [CrossRef] [PubMed]
    [Google Scholar]
  2. Eren AM, Sogin ML, Morrison HG, Vineis JH, Fisher JC et al. A single genus in the gut microbiome reflects host preference and specificity. Isme J 2015; 9: 90– 100 [CrossRef] [PubMed]
    [Google Scholar]
  3. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 2013; 4: 1111– 1119 [CrossRef] [PubMed]
    [Google Scholar]
  4. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174– 180 [CrossRef] [PubMed]
    [Google Scholar]
  5. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58: 1896– 1902 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lawson PA, Finegold SM. Reclassification of Ruminococcus obeum as Blautia obeum comb. nov. Int J Syst Evol Microbiol 2015; 65: 789– 793 [CrossRef] [PubMed]
    [Google Scholar]
  7. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
    [Google Scholar]
  8. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44: 812– 826 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD. Ruminococcus hydrogenotrophicus sp. nov., a new H 2 /CO 2 -utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 1996; 166: 176– 183 [CrossRef] [PubMed]
    [Google Scholar]
  10. Ezaki T, Li N, Hashimoto Y, Miura H, Yamamoto H. 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int J Syst Bacteriol 1994; 44: 130– 136 [CrossRef] [PubMed]
    [Google Scholar]
  11. Moore WEC, Johnson JL, Holdeman LV. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 1976; 26: 238– 252 [CrossRef]
    [Google Scholar]
  12. Park SK, Kim MS, Bae JW. Blautia faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2013; 63: 599– 603 [CrossRef] [PubMed]
    [Google Scholar]
  13. Park SK, Kim MS, Roh SW, Bae JW. Blautia stercoris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2012; 62: 776– 779 [CrossRef] [PubMed]
    [Google Scholar]
  14. Rieu-Lesme F, Morvan B, Collins MD, Fonty G, Willems A. A new H2/CO2-using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. FEMS Microbiol Lett 1996; 140: 281– 286 [PubMed]
    [Google Scholar]
  15. Simmering R, Taras D, Schwiertz A, Le Blay G, Gruhl B et al. Ruminococcus luti sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 2002; 25: 189– 193 [CrossRef] [PubMed]
    [Google Scholar]
  16. Holdeman LV, Moore WEC. New Genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int J Syst Bacteriol 1974; 24: 260– 277 [CrossRef]
    [Google Scholar]
  17. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1: 16131 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kaneuchi C, Benno Y, Mitsuoka T. Clostridium coccoides, a new species from the feces of mice. Int J Syst Bacteriol 1976; 26: 482– 486 [CrossRef]
    [Google Scholar]
  19. Furuya H, Ide Y, Hamamoto M, Asanuma N, Hino T. Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. Arch Microbiol 2010; 192: 365– 372 [CrossRef] [PubMed]
    [Google Scholar]
  20. Stams AJ, van Dijk JB, Dijkema C, Plugge CM. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 1993; 59: 1114– 1119 [PubMed]
    [Google Scholar]
  21. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543– 546 [CrossRef] [PubMed]
    [Google Scholar]
  22. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575– 580 [PubMed]
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991; pp. 115– 175
    [Google Scholar]
  24. Vannini C, Rosati G, Verni F, Petroni G. Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of 'Candidatus Devosia euplotis'. Int J Syst Evol Microbiol 2004; 54: 1151– 1156 [CrossRef] [PubMed]
    [Google Scholar]
  25. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  26. Messing J. New M13 vectors for cloning. Methods Enzymol 1983; 101: 20– 78 [PubMed] [Crossref]
    [Google Scholar]
  27. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46: 327– 338 [CrossRef] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  32. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  34. MIDI Sherlock Microbial Identification System Operating Manual, Version 3.0 Newark, DE: MIDI, Inc; 1999
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007
    [Google Scholar]
  37. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455– 477 [CrossRef] [PubMed]
    [Google Scholar]
  38. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281– 1286 [CrossRef] [PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  41. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002623
Loading
/content/journal/ijsem/10.1099/ijsem.0.002623
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error