1887

Abstract

A Gram-stain-variable, aerobic, rod-shaped, motile and spore-forming bacterial strain, designated CJ11, was isolated from a tidal flat sediment sample from Ganghwa-do, Republic of Korea. Strain CJ11 grew optimally on R2A at 30 °C and pH 7.0. Sequencing results of the 16S rRNA gene revealed that strain CJ11 possesses two copies of the 16S rRNA gene varying at five nucleotide positions. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CJ11 belonged to the genus within the family and was most closely related to KCTC 33691 (99.36–99.15 % similarity). DNA–DNA relatedness levels of strain CJ11 was 41.7 % (reciprocal, 57.8 %) to KCTC 33691. The G+C content of the genomic DNA was 51.0 mol%. Strain CJ11contained -diaminopimelic acid in the cell-wall peptidoglycan. The major isoprenoid quinone was menaquinone-7. The major cellular fatty acids were anteiso-C, C and iso-C. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, an unidentified glycolipid and several unidentified lipids. On the basis of the polyphasic taxonomic study, strain CJ11 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CJ11 (=KACC 19304=JCM 32080).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002613
2018-03-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/936.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002613&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1993;64:253–260 [CrossRef]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  3. Priest FG. Paenibacillus. In William W. (editor) Bergey's Manual of Systematics of Archaea and Bacteria Hoboken, UK: John Wiley & Sons, Ltd; 2015; pp.1–40
    [Google Scholar]
  4. Lee JS, Lee KC, Chang YH, Hong SG, Oh HW et al. Paenibacillus daejeonensis sp. nov., a novel alkaliphilic bacterium from soil. Int J Syst Evol Microbiol 2002;52:2107–2111 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim DU, Kim SG, Lee H, Chun J, Cho JC et al. Paenibacillus xanthinilyticus sp. nov., isolated from agricultural soil. Int J Syst Evol Microbiol 2015;65:2937–2942 [CrossRef][PubMed]
    [Google Scholar]
  6. Baik KS, Choe HN, Park SC, Kim EM, Seong CN. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2011;61:2763–2768 [CrossRef][PubMed]
    [Google Scholar]
  7. Bae JY, Kim KY, Kim JH, Lee K, Cho JC et al. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2010;60:644–647 [CrossRef][PubMed]
    [Google Scholar]
  8. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez JC et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015;65:4621–4626 [CrossRef][PubMed]
    [Google Scholar]
  9. Chou JH, Chou YJ, Lin KY, Sheu SY, Sheu DS et al. Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2007;57:1346–1350 [CrossRef][PubMed]
    [Google Scholar]
  10. Son JS, Kang HU, Ghim SY. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis. Int J Syst Evol Microbiol 2014;64:2865–2870 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen WM, Lin KR, Sheu SY. Paenibacillus lacus sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 2017;67:1582–1588 [CrossRef][PubMed]
    [Google Scholar]
  12. Wang M, Yang M, Zhou G, Luo X, Zhang L et al. Paenibacillus tarimensis sp. nov., isolated from sand in Xinjiang, China. Int J Syst Evol Microbiol 2008;58:2081–2085 [CrossRef][PubMed]
    [Google Scholar]
  13. Dsouza M, Taylor MW, Ryan J, MacKenzie A, Lagutin K et al. Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 2014;64:1406–1411 [CrossRef][PubMed]
    [Google Scholar]
  14. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley and Sons, Ltd; 1991; pp.115–175
    [Google Scholar]
  16. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  19. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Schliep KP. Estimating phylogenetic trees with phangorn. Bioinformatics 2016;27:592–593[Crossref]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  23. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985;22:160–174 [CrossRef][PubMed]
    [Google Scholar]
  24. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  26. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 2001;29:181–184 [CrossRef][PubMed]
    [Google Scholar]
  27. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013;79:5962–5969 [CrossRef][PubMed]
    [Google Scholar]
  28. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 1996;178:5636–5643 [CrossRef][PubMed]
    [Google Scholar]
  29. Hamasaki Y, Watanabe Y, Kotoura S, Fuchu H, Sugiyama M et al. Paenibacillus macerans possesses two types of 16S rDNA copies in a genome with a length difference of twelve base pairs. Biosci Biotechnol Biochem 2005;69:1995–1998 [CrossRef][PubMed]
    [Google Scholar]
  30. Bosshard PP, Zbinden R, Altwegg M. Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int J Syst Evol Microbiol 2002;52:2241–2249 [CrossRef][PubMed]
    [Google Scholar]
  31. Kishore KH, Begum Z, Pathan AA, Shivaji S. Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 2010;60:1909–1913 [CrossRef][PubMed]
    [Google Scholar]
  32. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  35. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933;77:194 [CrossRef][PubMed]
    [Google Scholar]
  36. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  38. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316[PubMed]
    [Google Scholar]
  39. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  40. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002613
Loading
/content/journal/ijsem/10.1099/ijsem.0.002613
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error