1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming bacterium, designated MLS-26-JM13-11, was isolated from potato stems, collected in Guyuan County, Hebei Province, China. Strain MLS-26-JM13-11 could grow at 10–39 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.2) and in the presence of 0–4.0 % (w/v) NaCl (optimum, 1.0 % w/v). Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain MLS-26-JM13-11 formed a stable clade with Sphingobacterium bambusae IBFC2009 and Sphingobacterium griseoflavum SCU-B140, with the 16S rRNA gene sequence similarities ranging from 95.9 % to 97.0 %. The major cellular fatty acids comprised iso-C15 : 0 (36.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 34.0 %), C16 : 0 (3.0 %) and iso-C17 : 0 3-OH (13.4 %). Strain MLS-26-JM13-11 contained sphingoglycolipid, phosphatidyl ethanolamine, six unknown lipids, one unknown aminolipid, four unknown polarlipids and two unknown aminophospholipids. The isoprenoid quinone was MK-7. The DNA G+C content was 42.6 mol%. Furthermore, the average nucleotide identity and in silico estimated DNA–DNA reassociation values among MLS-26-JM13-11 and S. bambusae KCTC 22814 were in all cases below the respective threshold for species differentiation. On the basis of phenotypic, genotypic and phylogenetic evidence, strain MLS-26-JM13-11 (=ACCC 60057=JCM 32274) represents a novel species within the genus Sphingobacterium , for which the name Sphingobacterium solani sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002605
2018-02-09
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1012.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002605&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33: 580– 598 [CrossRef]
    [Google Scholar]
  2. Wauters G, Janssens M, de Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012; 62: 2598– 2601 [CrossRef] [PubMed]
    [Google Scholar]
  3. Duan S, Liu Z, Feng X, Zheng K, Cheng L. Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. J Microbiol 2009; 47: 693– 698 [CrossRef] [PubMed]
    [Google Scholar]
  4. Long X, Liu B, Zhang S, Zhang Y, Zeng Z et al. Sphingobacterium griseoflavum sp. nov., isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2016; 66: 1956– 1961 [CrossRef] [PubMed]
    [Google Scholar]
  5. Li Y, Song LM, Guo MW, Wang LF, Liang WX. Sphingobacterium populi sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2016; 66: 3456– 3462 [CrossRef] [PubMed]
    [Google Scholar]
  6. Wang X, Zhang CF, Yu X, Hu G, Yang HX et al. Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2016; 66: 4968– 4974 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kämpfer P, Busse HJ, Kleinhagauer T, McInroy JA, Glaeser SP. Sphingobacterium zeae sp. nov., an endophyte of maize. Int J Syst Evol Microbiol 2016; 66: 2643– 2649 [CrossRef] [PubMed]
    [Google Scholar]
  8. Siddiqi MZ, Muhammad Shafi S, Choi KD, Im WT, Aslam Z. Sphingobacterium jejuense sp. nov., with ginsenoside-converting activity, isolated from compost. Int J Syst Evol Microbiol 2016; 66: 4433– 4439 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lai WA, Hameed A, Liu YC, Hsu YH, Lin SY et al. Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. 2013. Int J Syst Evol Microbiol 2016; 66: 5336– 5344 [CrossRef] [PubMed]
    [Google Scholar]
  10. Fu YS, Hussain F, Habib N, Khan IU, Chu X et al. Sphingobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67: 2284– 2288 [CrossRef] [PubMed]
    [Google Scholar]
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9: 945– 967
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kimura M. The Neutral Theory of Molecular Evolution New York: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characteristics. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  21. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  22. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 8th ed. San Francisco, CA: Pearson/Benjamin Cummings; 2008
    [Google Scholar]
  23. Barrow GI, Feltham RKA. (editors) Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 2004
    [Google Scholar]
  24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114– 2120 [CrossRef] [PubMed]
    [Google Scholar]
  25. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and Mmni-metagenomes from highly chime-ric reads. Lect N Bioinformat 2013; 7821: 158– 170
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  28. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  30. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N et al. Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie van Leeuwenhoek 2014; 105: 325– 333 [CrossRef] [PubMed]
    [Google Scholar]
  31. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 2013; 63: 755– 760 [CrossRef] [PubMed]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  33. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Work TS, Work E. (editors) Laboratory Techniques in Biochemistry and Molecular Biologyvol. 3 Amsterdam: Elsevier; 1972; pp. 269– 610
    [Google Scholar]
  34. Raj PS, Ramaprasad EV, Vaseef S, Sasikala C, Ramana C. Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol 2013; 63: 181– 186 [CrossRef] [PubMed]
    [Google Scholar]
  35. Hiraishi A, Hoshino Y. Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 1984; 30: 435– 448 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002605
Loading
/content/journal/ijsem/10.1099/ijsem.0.002605
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error