1887

Abstract

A bright-orange-pigmented, Gram-stain-negative, motile, and rod-shaped bacterium, strain MAA42, was isolated from a marine sponge of the genus , which is in long-time culture in a marine aquarium system at the Justus Liebig University Giessen, Germany. The strain grew at 4–34 °C (optimum 28 °C), in the presence of 0.5–9.5 % (w/v) NaCl (optimum 3.5 %) and at pH 4.5–10.0 (optimum pH 7.5). Strain MAA42 shared the highest 16S rRNA gene sequence similarity (98.1 %) with the type strain of Sequence similarities to all other closely related type strains were below 97 %. DNA–DNA hybridization of strain MAA42 with DSM 22008 resulted in values of 4.7 % (reciprocal 17.7 %). Major cellular fatty acids of strain MAA42 were Cω7 (66.2 %), C 2-OH (17.4 %), and C (14.1 %). Spermidine was predominant in the polyamine pattern, and ubiquinone Q-10 was the major respiratory quinone. The polar lipid profile contained the major compounds phosphatidylglycerol, monoglycosyldiglyceride, three unidentified phospholipids, and one unidentified glycolipid. Glucuronopyranosyldiglyceride was present as a minor compound. The diagnostic diamino acid of the peptidoglycan was -diaminopimelic acid. The genomic DNA G+C content was 52.8 mol%. Based on the genotypic, chemotaxonomic, and phenotypic analyses, strain MAA42 represents a novel species of the genus for which the name is proposed. The type strain is MAA42 (=CCM 8709=CIP 111178=LMG 29765).

Keyword(s): Litorimonas , marine microbe and sponge
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002592
2018-03-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/835.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002592&mimeType=html&fmt=ahah

References

  1. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  2. Alain K, Tindall BJ, Intertaglia L, Catala P, Lebaron P. Hellea balneolensis gen. nov., sp. nov., a prosthecate alphaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 2008;58:2511–2519 [CrossRef][PubMed]
    [Google Scholar]
  3. Cho YJ, Yi H, Seo B, Cho KH, Chun J. Fretibacter rubidus gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013;63:4633–4638 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee K, Lee HK, Choi TH, Cho JC. Robiginitomaculum antarcticum gen. nov., sp. nov., a member of the family Hyphomonadaceae, from Antarctic seawater. Int J Syst Evol Microbiol 2007;57:2595–2599 [CrossRef][PubMed]
    [Google Scholar]
  5. Jung JY, Kim JM, Jin HM, Kim SY, Park W et al. Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011;61:1534–1538 [CrossRef][PubMed]
    [Google Scholar]
  6. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK. Litorimonas cladophorae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Cladophora stimpsoni, and emended descriptions of the genus Litorimonas and Litorimonas taeaensis. Antonie van Leeuwenhoek 2013;103:1263–1269 [CrossRef][PubMed]
    [Google Scholar]
  7. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis. Int J Syst Evol Microbiol 2013;63:314–320 [CrossRef][PubMed]
    [Google Scholar]
  8. Fukui Y, Kobayashi M, Saito H, Oikawa H, Yano Y et al. Algimonas ampicilliniresistens sp. nov., isolated from the red alga Porphyra yezoensis, and emended description of the genus Algimonas. Int J Syst Evol Microbiol 2013;63:4407–4412 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu C, Zhang XY, Song XY, Su HN, Qin QL et al. Algimonas arctica sp. nov., isolated from intertidal sand, and emended description of the genus Algimonas. Int J Syst Evol Microbiol 2015;65:3256–3261 [CrossRef][PubMed]
    [Google Scholar]
  10. Schellenberg J, Busse HJ, Hardt M, Schubert P, Wilke T et al. Winogradskyella haliclonae sp. nov., isolated from a marine sponge of the genus Haliclona. Int J Syst Evol Microbiol 2017;67:4902–4910 [CrossRef][PubMed]
    [Google Scholar]
  11. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  12. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  15. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  17. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Department of Genome Sciences, University of Washington, Seattle: 2005
    [Google Scholar]
  19. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Ludwig W, Klenk HP. Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In Boone DR, Castenholz RW. (editors) Bergey’s Manual of Systematic Bacteriology, The Archaea and the Deeply Branching Phototrophic Bacteria New York: Springer-Verlag; 2001; pp.49–65[Crossref]
    [Google Scholar]
  22. Peplies J, Kottmann R, Ludwig W, Glöckner FO. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 2008;31:251–257 [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  24. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  25. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  26. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][Crossref]
    [Google Scholar]
  27. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013;63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  28. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  29. Reichenbach H. Flavobacteriaceae fam. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no. Int J Syst Bacteriol 1992;42:327–329[Crossref]
    [Google Scholar]
  30. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:3345–3354 [CrossRef][PubMed]
    [Google Scholar]
  31. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972;110:402–429
    [Google Scholar]
  32. Biebl H et al. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 2005;55:1089–1096 [CrossRef]
    [Google Scholar]
  33. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  34. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  35. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  36. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  37. Auling G, Busse H-J, Pilz F, Webb L, Kneifel H et al. Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 1991;41:223–228 [CrossRef]
    [Google Scholar]
  38. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxnonomy of Prokaryotes, Methods in Microbiologyvol. 38 London: Academic Press; 2011; pp.101–129[Crossref]
    [Google Scholar]
  39. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  40. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  41. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse HJ. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002592
Loading
/content/journal/ijsem/10.1099/ijsem.0.002592
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error