1887

Abstract

Aspergillus candidus is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using A. candidus and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among A. candidus isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The A. candidus sensu lato isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in A. candidus sensu lato. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, Aspergillus dobrogensis, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651=NRRL 62821=IBT 32697=CBS 143370) and its differentiation from A. candidus is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section Candidi members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section Candidi.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002583
2018-02-15
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/995.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002583&mimeType=html&fmt=ahah

References

  1. Hubka V, Lyskova P, Frisvad JC, Peterson SW, Skorepova M et al. Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi. Med Mycol 2014; 52: 565– 576 [CrossRef] [PubMed]
    [Google Scholar]
  2. Varga J, Frisvad JC, Samson RA. Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Stud Mycol 2007; 59: 75– 88 [CrossRef] [PubMed]
    [Google Scholar]
  3. Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 2014; 78: 63– 139 [CrossRef] [PubMed]
    [Google Scholar]
  4. Klich MA. Biogeography of Aspergillus species in soil and litter. Mycologia 2002; 94: 21– 27 [CrossRef] [PubMed]
    [Google Scholar]
  5. Papavizas G, Christensen C, Grain Storage Studies. X. Effect of invasion by individual species and mixtures of species of Aspergillus upon germination and development of discolored germs in wheat. Cereal Chem 1960; 37: 197– 203
    [Google Scholar]
  6. Pitt JI, Hocking AD. Aspergillus and related teleomorphs. In Pitt JI, Hocking AD. (editors) Fungi and Food Spoilage London: Springer; 2009; pp. 275– 337 [Crossref]
    [Google Scholar]
  7. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B et al. Food and Indoor Fungi Utrecht: CBS KNAW Biodiversity Center; 2010
    [Google Scholar]
  8. Sinha RN, Wallace HAH. Storage stability of farm-stored rapeseed and barley. Can J Plant Sci 1977; 57: 351– 365 [CrossRef]
    [Google Scholar]
  9. Visagie CM, Yilmaz N, Renaud JB, Sumarah MW, Hubka V et al. A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. MycoKeys 2017; 19: 1– 30 [CrossRef]
    [Google Scholar]
  10. Elaasser MM, Abdel-Aziz MM, El-Kassas RA. Antimicrobial, antiviral and antitumor activities of pyranone derivative obtained from Aspergillus candidus. J Microbiol Biotechnol Res 2017; 1: 5– 17
    [Google Scholar]
  11. Rahbaek L, Frisvad JC, Christophersen C. An amendment of Aspergillus section Candidi based on chemotaxonomical evidence. Phytochemistry 2000; 53: 581– 586 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yen GC, Chang YC, Sheu F, Chiang HC. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J Agric Food Chem 2001; 49: 1426– 1431 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yen GC, Chiang HC, Wu CH, Yeh CT. The protective effects of Aspergillus candidus metabolites against hydrogen peroxide-induced oxidative damage to Int 407 cells. Food Chem Toxicol 2003; 41: 1561– 1567 [CrossRef] [PubMed]
    [Google Scholar]
  14. Takahashi C, Yoshihira K, Natori S, Umeda M. The structures of toxic metabolites of Aspergillus candidus. I. The compounds A and E, cytotoxic p-terphenyls. Chem Pharm Bull 1976; 24: 613– 620 [CrossRef] [PubMed]
    [Google Scholar]
  15. Wang Y, Compton C, Rankin GO, Cutler SJ, Rojanasakul Y et al. 3-Hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells. Int J Oncol 2017; 50: 1392– 1402 [CrossRef] [PubMed]
    [Google Scholar]
  16. Wang R, Guo ZK, Li XM, Chen FX, Zhan XF et al. Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity. Antonie van Leeuwenhoek 2015; 108: 215– 219 [CrossRef] [PubMed]
    [Google Scholar]
  17. Farias CM, de Souza OC, Sousa MA, Cruz R, Magalhães OMC et al. High-level lipase production by Aspergillus candidus URM 5611 under solid state fermentation (SSF) using waste from Siagrus coronata (Martius) Becari. Afr J Biotechnol 2015; 14: 820– 828 [Crossref]
    [Google Scholar]
  18. Garai D, Kumar V. Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3 Biotech 2013; 3: 127– 136 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kochhar A, Gupta AK, Kaur N. Purification and immobilisation of inulinase from Aspergillus candidus for producing fructose. J Sci Food Agric 1999; 79: 549– 554 [CrossRef]
    [Google Scholar]
  20. Milala M, Shehu B, Zanna H, Omosioda V. Degradation of agro-waste by cellulase from Aspergillus candidus. Asian J Biotechnol 2009; 1: 51– 56 [Crossref]
    [Google Scholar]
  21. Rahim MA, Saxena RK, Gupta R, Sheoran A, Giri B. A novel and quick plate assay for acetamidase producers and process optimization for its production by Aspergillus candidus. Process Biochem 2003; 38: 861– 866 [CrossRef]
    [Google Scholar]
  22. Zheng P, Yu H, Sun Z, Ni Y, Zhang W et al. Production of galacto-oligosaccharides by immobilized recombinant β‐galactosidase from Aspergillus candidus. Biotechnol J 2006; 1: 1464– 1470 [CrossRef] [PubMed]
    [Google Scholar]
  23. Spotti E, Mutti P, Scalari F, Nalgiovense P, Gladioli P et al. and Aspergillus candidus. Possibility of their use as starter cultures. Industria Conserve 1994; 69: 237– 241
    [Google Scholar]
  24. Sunesen LO, Stahnke LH. Mould starter cultures for dry sausages-selection, application and effects. Meat Sci 2003; 65: 935– 948 [CrossRef] [PubMed]
    [Google Scholar]
  25. Yen G-C, Chang Y-C, Su S-W. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem 2003; 83: 49– 54 [CrossRef]
    [Google Scholar]
  26. de Hoog GS, Guarro J, Gené J, Figueras MJ. Atlas of Clinical Fungi, 4th ed. Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2014
    [Google Scholar]
  27. Hubka V, Kubatova A, Mallatova N, Sedlacek P, Melichar J et al. Rare and new etiological agents revealed among 178 clinical Aspergillus strains obtained from Czech patients and characterized by molecular sequencing. Med Mycol 2012; 50: 601– 610 [CrossRef] [PubMed]
    [Google Scholar]
  28. Masih A, Singh PK, Kathuria S, Agarwal K, Meis JF et al. Identification by molecular methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and antifungal susceptibility profiles of clinically significant rare Aspergillus species in a Referral Chest Hospital in Delhi, India. J Clin Microbiol 2016; 54: 2354– 2364 [CrossRef] [PubMed]
    [Google Scholar]
  29. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, White TJ. (editors) PCR Protocols: a Guide to Methods and Applications San Diego: Academic Press; 1990; pp. 315– 322
    [Google Scholar]
  30. Kretzer A, Li Y, Szaro T, Bruns TD. Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia 1996; 88: 776– 785 [CrossRef]
    [Google Scholar]
  31. O’Donnell K. Fusarium and its near relatives. In Reynolds DR, Taylor JW. (editors) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics Wallingford: CAB International; 1993; pp. 225– 233
    [Google Scholar]
  32. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995; 61: 1323– 1330 [PubMed]
    [Google Scholar]
  33. Hubka V, Kolarik M. β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 2012; 29: 1– 10 [CrossRef] [PubMed]
    [Google Scholar]
  34. Peterson SW. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 2008; 100: 205– 226 [CrossRef] [PubMed]
    [Google Scholar]
  35. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 1999; 16: 1799– 1808 [CrossRef] [PubMed]
    [Google Scholar]
  36. Jurjević Ž, Kubátová A, Kolařík M, Hubka V. Taxonomy of Aspergillus section Petersonii sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Syst Evol 2015; 301: 2441– 2462 [Crossref]
    [Google Scholar]
  37. Hubka V, Nováková A, Peterson SW, Frisvad JC, Sklenář F et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst Evol 2016; 302: 1267– 1299 [CrossRef]
    [Google Scholar]
  38. Réblová M, Hubka V, Thureborn O, Lundberg J, Sallstedt T et al. From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the Chaetothyriales. PLoS One 2016; 11: e0163396 [CrossRef] [PubMed]
    [Google Scholar]
  39. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772– 780 [CrossRef] [PubMed]
    [Google Scholar]
  40. Lanfear R, Calcott B, Ho SY, Guindon S. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 2012; 29: 1695– 1701 [CrossRef] [PubMed]
    [Google Scholar]
  41. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32: 268– 274 [CrossRef] [PubMed]
    [Google Scholar]
  42. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539– 542 [CrossRef] [PubMed]
    [Google Scholar]
  43. Rambaut A, Suchard M, Xie D, Drummond A. Tracer v1. 6. 2014. Website 2014; http://beast.bio.ed.ac.uk
    [Google Scholar]
  44. Reid NM, Carstens BC. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 2012; 12: 196 [CrossRef] [PubMed]
    [Google Scholar]
  45. Fujisawa T, Barraclough TG. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 2013; 62: 707– 724 [CrossRef] [PubMed]
    [Google Scholar]
  46. Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 2017; 33: 1630– 1638 [CrossRef] [PubMed]
    [Google Scholar]
  47. Jones G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Math Biol 2017; 74: 447– 467 [CrossRef] [PubMed]
    [Google Scholar]
  48. Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol 2013; 22: 4369– 4383 [CrossRef] [PubMed]
    [Google Scholar]
  49. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008; 25: 1253– 1256 [CrossRef] [PubMed]
    [Google Scholar]
  50. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2014; 10: e1003537 [CrossRef] [PubMed]
    [Google Scholar]
  51. R Core Team R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing; 2015
    [Google Scholar]
  52. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57: 758– 771 [CrossRef] [PubMed]
    [Google Scholar]
  53. Heled J, Drummond AJ. Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010; 27: 570– 580 [CrossRef] [PubMed]
    [Google Scholar]
  54. Xia X. DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. J Hered 2017; 108: 431– 437 [CrossRef] [PubMed]
    [Google Scholar]
  55. Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA 2010; 107: 9264– 9269 [CrossRef] [PubMed]
    [Google Scholar]
  56. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8: 28– 36 [CrossRef]
    [Google Scholar]
  57. Bouckaert RR. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 2010; 26: 1372– 1373 [CrossRef] [PubMed]
    [Google Scholar]
  58. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 2014; 78: 141– 173 [CrossRef] [PubMed]
    [Google Scholar]
  59. Kelly KL. Inter-society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington: US Government Printing Office; 1964
    [Google Scholar]
  60. Hubka V, Nováková A, Kolařík M, Jurjević Ž, Peterson SW. Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 2015; 107: 169– 208 [CrossRef] [PubMed]
    [Google Scholar]
  61. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J 2008; 50: 346– 363 [CrossRef] [PubMed]
    [Google Scholar]
  62. Wickham H. ggplot2: Elegant Graphics for Data Analysis New York: Springer-Verlag; 2009
    [Google Scholar]
  63. Houbraken J, Spierenburg H, Frisvad JC. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek 2012; 101: 403– 421 [CrossRef] [PubMed]
    [Google Scholar]
  64. Frisvad JC, Thrane U. Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV—VIS spectra (diodearray detection). J Chromatogr A 1987; 404: 195– 214 [CrossRef]
    [Google Scholar]
  65. Frisvad JC, Thrane U. Liquid column chromatography of mycotoxins. In Betina V. (editor) Chromatography of Mycotoxins: Techniques and Applications Journal of Chromatography Library 54 1993; pp. 253– 372 [Crossref]
    [Google Scholar]
  66. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO. Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 2011; 74: 2338– 2348 [CrossRef] [PubMed]
    [Google Scholar]
  67. Arendrup MC, Meletiadis J, Mouton JW, Guinea J, Cuenca-Estrella M et al. EUCAST technical note on isavuconazole breakpoints for Aspergillus, itraconazole breakpoints for Candida and updates for the antifungal susceptibility testing method documents. Clin Microbiol Infect 2016; 22: 571– 575 [CrossRef] [PubMed]
    [Google Scholar]
  68. Guo ZK, Yan T, Guo Y, Song YC, Jiao RH et al. p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3. J Nat Prod 2012; 75: 15– 21 [CrossRef] [PubMed]
    [Google Scholar]
  69. Arai K, Miyajima H, Mushiroda T, Yamamoto Y. Metabolites of Penicillium italicum Wehmer: isolation and structures of new metabolites including naturally occurring 4-ylidene-acyltetronic acids, italicinic acid and italicic acid. Chem Pharm Bull 1989; 37: 3229– 3235 [CrossRef]
    [Google Scholar]
  70. Steyn PS. The structures of five diketopiperazines from Aspergillus ustus. Tetrahedron 1973; 29: 107– 120 [CrossRef]
    [Google Scholar]
  71. Cai S, Sun S, Peng J, Kong X, Zhou H et al. Okaramines S–U, three new indole diketopiperazine alkaloids from Aspergillus taichungensis ZHN-7-07. Tetrahedron 2015; 71: 3715– 3719 [CrossRef]
    [Google Scholar]
  72. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect 2012; 18: E246 E247 [CrossRef] [PubMed]
    [Google Scholar]
  73. Hope WW, Cuenca-Estrella M, Lass-Flörl C, Arendrup MC.. European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST) EUCAST technical note on voriconazole and Aspergillus spp. Clin Microbiol Infect 2013; 19: E278 E280 [CrossRef] [PubMed]
    [Google Scholar]
  74. Moling O, Lass‐floerl C, Verweij P, Porte M, Boiron P et al. Chronic and acute Aspergillus meningitis. Mycoses 2002; 45: 504– 511
    [Google Scholar]
  75. Becker A, Sifaoui F, Gagneux M, Desprez S, Vignoli P et al. Drug interactions between voriconazole, darunavir/ritonavir and tenofovir/emtricitabine in an HIV-infected patient treated for Aspergillus candidus lung abscess. Int J STD AIDS 2015; 26: 672– 675 [CrossRef] [PubMed]
    [Google Scholar]
  76. Gupta AK, Gupta G, Jain HC, Lynde CW, Foley KA et al. The prevalence of unsuspected onychomycosis and its causative organisms in a multicentre Canadian sample of 30 000 patients visiting physicians' offices. J Eur Acad Dermatol Venereol 2016; 30: 1567– 1572 [CrossRef] [PubMed]
    [Google Scholar]
  77. Nouripour-Sisakht S, Mirhendi H, Shidfar MR, Ahmadi B, Rezaei-Matehkolaei A et al. Aspergillus species as emerging causative agents of onychomycosis. J Mycol Med 2015; 25: 101– 107 [CrossRef] [PubMed]
    [Google Scholar]
  78. Zotti M, Machetti M, Persi A, Barabino G, Mariotti MG et al. Different species of Aspergillus involved in ungual pathologies. Boll Soc Ital Biol Sper 2011; 84: 171– 173 [CrossRef]
    [Google Scholar]
  79. Cole RJ, Hill RA, Blankenship PD, Sanders TH. Color mutants of Aspergillus flavus and Aspergillus parasiticus in a study of preharvest invasion of peanuts. Appl Environ Microbiol 1986; 52: 1128– 1131 [PubMed]
    [Google Scholar]
  80. Jackson JC, Higgins LA, Lin X. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS One 2009; 4: e4224 [CrossRef] [PubMed]
    [Google Scholar]
  81. Raper KB, Fennell DI. The Genus Aspergillus Baltimore: Williams & Wilkins Co; 1965
    [Google Scholar]
  82. Summerbell RC, Cooper E, Bunn U, Jamieson F, Gupta AK. Onychomycosis: a critical study of techniques and criteria for confirming the etiologic significance of nondermatophytes. Med Mycol 2005; 43: 39– 59 [CrossRef] [PubMed]
    [Google Scholar]
  83. García-Martos P, García-Agudo L, Gutiérrez-Calzada J, Ruiz-Aragón J, Saldarreaga A et al. [In vitro activity of amphotericin B, itraconazole and voriconazole against 20 species of Aspergillus using the Sensititre microdilution method]. Enferm Infecc Microbiol Clin 2005; 23: 15– 18 [PubMed] [Crossref]
    [Google Scholar]
  84. Gomez-Lopez A, Garcia-Effron G, Mellado E, Monzon A, Rodriguez-Tudela JL et al. In vitro activities of three licensed antifungal agents against Spanish clinical isolates of Aspergillus spp. Antimicrob Agents Chemother 2003; 47: 3085– 3088 [CrossRef] [PubMed]
    [Google Scholar]
  85. Wildfeuer A, Seidl HP, Paule I, Haberreiter A. In vitro evaluation of voriconazole against clinical isolates of yeasts, moulds and dermatophytes in comparison with itraconazole, ketoconazole, amphotericin B and griseofulvin. Mycoses 1998; 41: 309– 319 [CrossRef] [PubMed]
    [Google Scholar]
  86. Dóczi I, Dósa E, Varga J, Antal Z, Kredics L et al. Etest for assessing the susceptibility of filamentous fungi. Acta Microbiol Immunol Hung 2004; 51: 271– 281 [CrossRef] [PubMed]
    [Google Scholar]
  87. Risslegger B, Zoran T, Lackner M, Aigner M, Sánchez-Reus F et al. A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clin Microbiol Infect 2017; 23: 776.e1– 77776 [CrossRef] [PubMed]
    [Google Scholar]
  88. Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99: 7859– 7877 [CrossRef] [PubMed]
    [Google Scholar]
  89. Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC et al. Diagnostic tools to identify black aspergilli. Stud Mycol 2007; 59: 129– 145 [CrossRef] [PubMed]
    [Google Scholar]
  90. Xia X, Kim S, Bang S, Lee HJ, Liu C et al. Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. JS752 and its antibacterial activities. J Antibiot 2015; 68: 139– 141 [CrossRef] [PubMed]
    [Google Scholar]
  91. Cai S, Kong X, Wang W, Zhou H, Zhu T et al. Aspergilazine A, a diketopiperazine dimer with a rare N-1 to C-6 linkage, from a marine-derived fungus Aspergillus taichungensis. Tetrahedron Lett 2012; 53: 2615– 2617 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002583
Loading
/content/journal/ijsem/10.1099/ijsem.0.002583
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error