1887

Abstract

A Gram-stain-negative, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 139, was isolated from the Pacific red alga Ahnfeltiato buchiensis. The phylogenetic analysis based on 16S rRNA gene sequences showed that the novel strain belonged to the genus Polaribacter , a member of the family Flavobacteriaceae , the phylum Bacteroidetes , with highest sequence similarity to Polaribacter butkevichii KMM 3938 (99.3 %) and 93.3–98.6 % to other recognized Polaribacter species. The prevalent fatty acids of strain 10Alg 139 were iso-C15 : 0 3-OH, C15 : 0 3-OH, iso-C15:0, iso-C13 : 0, C15 : 0 and C15 : 1ω6c. The polar lipid profile consisted of the major lipids phosphatidylethanolamine, two unidentified aminolipids and four unidentified lipids. The main respiratory quinone was menaquinone 6. The DNA G+C content of the type strain is 31.8 mol%. The new isolate and the type strains of recognized species of the genus Polaribacter were readily distinguished based on a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the isolate from alga represents a novel species of the genus Polaribacter , for which the name Polaribacter staleyi sp. nov. is proposed. The type strain is 10Alg 139 (=KCTC 52773=KMM 6729).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002554
2018-01-05
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/623.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002554&mimeType=html&fmt=ahah

References

  1. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48: 223– 235 [CrossRef] [PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Lysenko AM, Kalinovskaya NI, Mikhailov VV et al. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae. Curr Microbiol 2005; 51: 408– 412 [CrossRef] [PubMed]
    [Google Scholar]
  3. Yoon JH, Kang SJ, Oh TK. Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006; 56: 1251– 1255 [CrossRef] [PubMed]
    [Google Scholar]
  4. Lee YS, Lee DH, Kahng HY, Sohn SH, Jung JS. Polaribacter gangjinensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61: 1425– 1429 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wang Y, Gao L, Ming H, Zhang P, Zhu W. Polaribacter marinaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66: 4594– 4599 [CrossRef] [PubMed]
    [Google Scholar]
  6. Park S, Park JM, Jung YT, Lee KC, Lee JS et al. Polaribacter marinivivus sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Antonie van Leeuwenhoek 2014; 106: 1139– 1146 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kang H, Kim H, Joung Y, Joh K. Polaribacter lacunae sp. nov., isolated from a lagoon. Int J Syst Evol Microbiol 2017; 67: 681– 686 [CrossRef] [PubMed]
    [Google Scholar]
  8. Li H, Zhang XY, Liu C, Lin CY, Xu Z et al. Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 2014; 64: 973– 978 [CrossRef] [PubMed]
    [Google Scholar]
  9. Park S, Yoon SY, Ha MJ, Yoon JH. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67: 2036– 2042 [CrossRef] [PubMed]
    [Google Scholar]
  10. Wu Y, Yu M, Zhang Z, Wang Y, Yang X et al. Polaribacter pacificus sp. nov., isolated from a deep-sea polymetallic nodule from the eastern Pacific Ocean. Int J Syst Evol Microbiol 2017; 67: 3203– 3208 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim BC, Oh HW, Kim H, Park DS, Hong SG et al. Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. Int J Syst Evol Microbiol 2013; 63: 4000– 4005 [CrossRef] [PubMed]
    [Google Scholar]
  12. Hyun DW, Shin NR, Kim MS, Kim PS, Jung MJ et al. Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 2014; 64: 1654– 1661 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim YO, Park IS, Park S, Nam BH, Park JM et al. Polaribacter haliotis sp. nov., isolated from the gut of abalone Haliotis discus hannai. Int J Syst Evol Microbiol 2016; 66: 5562– 5567 [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim E, Shin SK, Choi S, Yi H. Polaribacter vadi sp. nov., isolated from a marine gastropod. Int J Syst Evol Microbiol 2017; 67: 144– 147 [CrossRef] [PubMed]
    [Google Scholar]
  15. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 2013; 63: 1665– 1672 [CrossRef] [PubMed]
    [Google Scholar]
  16. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata. Curr Microbiol 2013; 66: 16– 21 [CrossRef] [PubMed]
    [Google Scholar]
  17. Park S, Park JM, Jung YT, Lee KH, Yoon JH. Polaribacter undariae sp. nov., isolated from a brown alga reservoir. Int J Syst Evol Microbiol 2015; 65: 1679– 1685 [CrossRef] [PubMed]
    [Google Scholar]
  18. Park S, Yoon SY, Park JM, Yoon JH. Polaribacter insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67: 4013– 4019 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  23. Felsenstein J. PHYLIP (Phylogenetic Inference Package), Version 3.5c Department of Genetic, University of Washington, Seattle, USA: 1993
    [Google Scholar]
  24. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  27. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, with Methods and Digests of Generic Characteristics, 2nd ed. Baltimore: Williams & Wilkins Co; 1967
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  29. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  30. Lemos ML, Toranzo AE, Barja JL. Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 1985; 49: 1541– 1543 [PubMed]
    [Google Scholar]
  31. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8: 87– 91 [CrossRef]
    [Google Scholar]
  32. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51: 1639– 1652 [CrossRef] [PubMed]
    [Google Scholar]
  33. Bakunina I, Nedashkovskaya O, Balabanova L, Zvyagintseva T, Rasskasov V et al. Comparative analysis of glycoside hydrolases activities from phylogenetically diverse marine bacteria of the genus Arenibacter. Mar Drugs 2013; 11: 1977– 1998 [CrossRef] [PubMed]
    [Google Scholar]
  34. Nedashkovskaya OI, Kim SB, Zhukova NV, Kwak J, Mikhailov VV et al. Mesonia mobilis sp. nov., isolated from seawater, and emended description of the genus Mesonia. Int J Syst Evol Microbiol 2006; 56: 2433– 2436 [CrossRef] [PubMed]
    [Google Scholar]
  35. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  36. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  37. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  38. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler P et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  40. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  41. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002554
Loading
/content/journal/ijsem/10.1099/ijsem.0.002554
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error