1887

Abstract

A novel aerobic, Gram-stain-positive, motile, moderately halophilic and coccoid bacterial strain, designated LCB217, was isolated from a saline-alkali soil in north-western China and identified using a polyphasic taxonomic approach. Growth occurred with 3–15 % (w/v) NaCl (optimum 3–5 %), at 10–45 °C (optimum 30 °C) and at pH 7.0–9.0 (optimum pH 9.0). Strain LCB217 contained MK-7 and MK-8 as the predominant menaquinones and anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 as the major fatty acids. The polar lipids from strain LCB217 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid, one unidentified aminophospholipid and one unidentified lipid. The peptidoglycan type was A4α (l-Lys–d-Glu). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain LCB217 belonged to the genus Planococcus and was closely related to the type strains Planococcus plakortidis AS/ASP6 (II) (98.2 % similarity), Planococcus maitriensis S1 (97.7 %) and Planococcus salinarum ISL-16 (97.2 %). The G+C content of the genomic DNA was 49.4 mol%. DNA–DNA relatedness values between strain LCB217 and Planococcus plakortidis AS/ASP6 (II), Planococcus maitriensis S1 and Planococcus salinarum ISL-16 were 29.5, 38.1 and 39.5 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data, strain LCB217 represents a novel species of the genus Planococcus , for which the name Planococcus salinus sp. nov. is proposed. The type strain is LCB217 (=CGMCC 1.15685=KCTC 33861).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002548
2018-01-04
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/589.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002548&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1: 235– 238
    [Google Scholar]
  2. Yoon JH, Kang SS, Lee KC, Lee ES, Kho YH et al. Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evol Microbiol 2001; 51: 1511– 1520 [CrossRef] [PubMed]
    [Google Scholar]
  3. Nakagawa Y, Sakane T, Yokota A. Emendation of the genus Planococcus and transfer of Flavobacterium okeanokoites Zobell and Upham 1944 to the genus Planococcus as Planococcus okeanokoites comb. nov. Int J Syst Bacteriol 1996; 46: 866– 870 [CrossRef] [PubMed]
    [Google Scholar]
  4. Junge K, Gosink JJ, Hoppe HG, Staley JT. Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 1998; 21: 306– 314 [CrossRef] [PubMed]
    [Google Scholar]
  5. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S et al. Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 2005; 55: 91– 94 [CrossRef] [PubMed]
    [Google Scholar]
  6. Engelhardt MA, Daly K, Swannell RP, Head IM. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 2001; 90: 237– 247 [CrossRef] [PubMed]
    [Google Scholar]
  7. Reddy GS, Prakash JS, Vairamani M, Prabhakar S, Matsumoto GI et al. Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 2002; 6: 253– 261 [CrossRef] [PubMed]
    [Google Scholar]
  8. Dai X, Wang YN, Wang BJ, Liu SJ, Zhou YG. Planomicrobium chinense sp. nov., isolated from coastal sediment, and transfer of Planococcus psychrophilus and Planococcus alkanoclasticus to Planomicrobium as Planomicrobium psychrophilum comb. nov. and Planomicrobium alkanoclasticum comb. nov. Int J Syst Evol Microbiol 2005; 55: 699– 702 [CrossRef] [PubMed]
    [Google Scholar]
  9. Novitsky TJ, Kushner DJ. Planococcus halophilus sp.nov., a facultatively halophilic coccus. Int J Syst Bacteriol 1976; 26: 53– 57 [CrossRef]
    [Google Scholar]
  10. Hao MV, Kocur M, Komagata K. Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 1984; 30: 449– 459 [CrossRef]
    [Google Scholar]
  11. Kocur M, Zdena P, Hodgkiss W, Martinec T. The taxonomic status of the genus Planococcus Migula 1894. Int J Syst Bacteriol 1970; 20: 241– 248 [CrossRef]
    [Google Scholar]
  12. Hao MV, Komagata K. A new species of Planococcus, P. kocurii isolated from fish, frozen foods, and fish curing brine. J Gen Appl Microbiol 1985; 31: 441– 455 [CrossRef]
    [Google Scholar]
  13. Yoon JH, Weiss N, Kang KH, Oh TK, Park YH et al. Planococcus maritimus sp. nov., isolated from sea water of a tidal flat in Korea. Int J Syst Evol Microbiol 2003; 53: 2013– 2017 [CrossRef] [PubMed]
    [Google Scholar]
  14. Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A. Planococcus rifietensis sp. nov, isolated from algal mat collected from a sulfurous spring in Campania (Italy). Syst Appl Microbiol 2003; 26: 357– 366 [CrossRef] [PubMed]
    [Google Scholar]
  15. Alam SI, Singh L, Dube S, Reddy GS, Shivaji S. Psychrophilic Planococcus maitriensis sp.nov. from Antarctica. Syst Appl Microbiol 2003; 26: 505– 510 [CrossRef] [PubMed]
    [Google Scholar]
  16. Suresh K, Mayilraj S, Bhattacharya A, Chakrabarti T. Planococcus columbae sp. nov., isolated from pigeon faeces. Int J Syst Evol Microbiol 2007; 57: 1266– 1271 [CrossRef] [PubMed]
    [Google Scholar]
  17. Choi JH, Im WT, Liu QM, Yoo JS, Shin JH et al. Planococcus donghaensis sp. nov., a starch-degrading bacterium isolated from the East Sea, South Korea. Int J Syst Evol Microbiol 2007; 57: 2645– 2650 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yoon JH, Kang SJ, Lee SY, Oh KH, Oh TK. Planococcus salinarum sp. nov., isolated from a marine solar saltern, and emended description of the genus Planococcus. Int J Syst Evol Microbiol 2010; 60: 754– 758 [CrossRef] [PubMed]
    [Google Scholar]
  19. Mykytczuk NC, Wilhelm RC, Whyte LG. Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. Int J Syst Evol Microbiol 2012; 62: 1937– 1944 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kaur I, das AP, Acharya M, Klenk HP, Sree A et al. Planococcus plakortidis sp. nov., isolated from the marine sponge Plakortis simplex (Schulze). Int J Syst Evol Microbiol 2012; 62: 883– 889 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim JH, Kang HJ, Yu BJ, Kim SC, Lee PC. Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol 2015; 65: 3373– 3378 [CrossRef] [PubMed]
    [Google Scholar]
  22. See-Too WS, Ee R, Madhaiyan M, Kwon SW, Tan JY et al. Planococcus versutus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67: 944– 950 [CrossRef] [PubMed]
    [Google Scholar]
  23. Wang X, Wang Z, Zhao X, Huang X, Zhou Y et al. Planococcus ruber sp. nov., isolated from a polluted farmland soil sample. Int J Syst Evol Microbiol 2017; 67: 2549– 2554 [CrossRef] [PubMed]
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  25. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp. 25– 29
    [Google Scholar]
  26. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  27. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25: 360– 375 [CrossRef] [PubMed]
    [Google Scholar]
  28. Hiraishi A, Hoshino Y. Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 1984; 30: 435– 448 [CrossRef]
    [Google Scholar]
  29. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Work TS, Work E. (editors) Laboratory Techniques in Biochemistry and Molecular Biologyvol. 3 Amsterdam: Elsevier; 1972; pp. 269– 610
    [Google Scholar]
  30. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42: 989– 1005 [CrossRef]
    [Google Scholar]
  31. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  32. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57: 1424– 1428 [CrossRef] [PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  41. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  42. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  43. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  44. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  45. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  46. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002548
Loading
/content/journal/ijsem/10.1099/ijsem.0.002548
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error