1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile, aerobic bacterium was isolated from a sediment sample obtained from a wild ass sanctuary in Gujarat, India. The strain designated JC490 was oxidase- and catalase-positive. The 16S rRNA gene sequence analysis and sequence comparison data indicated that strain JC490 was a member of the genus and was closely related to AT1047 (96.4 %) and with other members of the genus (<96.3 %). The DNA GC content of strain JC490 was 34 mol%. Strain JC490 had phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids and five unidentified polar lipids. Menaquinone-6 was the only respiratory quinone found. Iso-C, anteiso-C and iso-C 3-OH were the major fatty acids of strain JC490. On the basis of physiological, genotypic, phylogenetic and chemotaxonomic analyses, it is concluded that strain JC490 constitutes a novel species of the genus for which the name sp. nov. is proposed. The type strain is JC490 (=KCTC 52835=LMG 30048).

Keyword(s): Chryseobacterium and new species
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002536
2018-02-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/542.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002536&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Venil CK, Nordin N, Zakaria ZA, Ahmad WA. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 2014;64:3153–3159 [CrossRef][PubMed]
    [Google Scholar]
  3. Holmes B, Steigerwalt AG, Nicholson AC. DNA–DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013;63:4639–4662 [CrossRef][PubMed]
    [Google Scholar]
  4. Kirk KE, Hoffman JA, Smith KA, Strahan BL, Failor KC et al. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 2013;63:4777–4783 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003;53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  6. Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS et al. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 2013;63:2835–2840 [CrossRef][PubMed]
    [Google Scholar]
  7. Loch TP, Faisal M. Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2014;64:1573–1579 [CrossRef][PubMed]
    [Google Scholar]
  8. de Beer H, Hugo CJ, Jooste PJ, Willems A, Vancanneyt M et al. Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 2005;55:2149–2153 [CrossRef][PubMed]
    [Google Scholar]
  9. Bernardet JF, Hugo C, Bruun B. The genera Chryseobacterium and Elizabethkingia. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.vol. 7 New York: Springer; 2006; pp.638–676
    [Google Scholar]
  10. Bernardet J-F, Hugo C, Bruun B. Genus VII. Chryseobacterium Vandamme et al. 1994. In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 Baltimore: Williams & Wilkins; 2011; pp.180–196
    [Google Scholar]
  11. Im WT, Yang JE, Kim SY, Yi TH. Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. Int J Syst Evol Microbiol 2011;61:1430–1435 [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P, Vaneechoutte M, Lodders N, de Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009;59:2421–2428 [CrossRef][PubMed]
    [Google Scholar]
  13. Park MS, Jung SR, Lee KH, Lee MS, do JO et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 2006;56:433–438 [CrossRef][PubMed]
    [Google Scholar]
  14. Wu YF, Wu QL, Liu SJ. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013;63:913–919 [CrossRef][PubMed]
    [Google Scholar]
  15. Divyasree B, Lakshmi KV, Bharti D, Sasikala C, Ramana C. Rhodovulum aestuarii sp. nov., isolated from a brackish water body. Int J Syst Evol Microbiol 2016;66:165–171 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  20. Venil CK, Zakaria ZA, Usha R, Ahmad WA. Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal Agric Biotechnol 2014;3:103–107 [CrossRef]
    [Google Scholar]
  21. Biebl H, Pfennig N. Isolation of members of the family Rhodospirillaceae. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteriavol. 1 New York: Springer; 1981; pp.267–273
    [Google Scholar]
  22. Cappuccino JG, Sherman N. Microbiology a Laboratory Manual, 5th ed. California: Benjamin/Cummings Science Publishing; 1998
    [Google Scholar]
  23. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Microbiology Washington, DC: American Society for Microbiology; 1981; pp.409–443
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Burdon RH, van Knippenberg PH. (editors) Laboratory Techniques in Biochemistry and Molecular Biologyvol. 3 part 2 Amsterdam: Elsevier; 1986; pp.100–112
    [Google Scholar]
  27. Oren A, Duker S, Ritter S. The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 1996;138:135–140 [CrossRef]
    [Google Scholar]
  28. Kates M. Techniques of Lipidology New York: Elsevier; 1972;[Crossref]
    [Google Scholar]
  29. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  30. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;3:152–155
    [Google Scholar]
  33. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  34. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002536
Loading
/content/journal/ijsem/10.1099/ijsem.0.002536
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error