1887

Abstract

A Gram-stain-negative, aerobic, yellow-coloured, motile by gliding, rod-shaped bacterial strain, designated R17H11, was isolated from surface sediment collected from the Ross Sea, Antarctica. Growth optimally occurred at 25–30 °C, at pH 7.0–7.5 and in the presence of 3 % NaCl (w/v). Phylogenetic trees based on 16S rRNA gene sequences indicated that strain R17H11 clustered together with Gramella flava JLT2011 and fell within the genus Gramella . Strain R17H11 shared the highest 16S rRNA gene similarities (96.1 and 96.0 %) with the type strains of Gramella forsetii and G. flava , and 92.6–95.5 % similarities with those of other known Gramella species. Strain R17H11 contained menaquinone-6 as the only isoprenoid quinone. The major fatty acids (>5 %) were summed feature 3 (17.5 %, comprising C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 (14.0 %), summed feature 9 (11.8 %, comprising 10-methyl C16 : 0 and/or iso-C17 : 1 ω9c), iso-C17 : 0 3-OH (11.8 %), iso-C16 : 0 (7.4 %), C17 : 1 ω6c (6.9 %) and anteiso-C15 : 0 (5.1 %). The major polar lipids were phosphatidylethanolamine, four unidentified lipids, an unidentified aminolipid, an unidentified aminophospholipid and an unidentified glycolipid. The DNA G+C content of strain R17H11 was 38.6 mol%. On the basis of the phylogenetic, physiological and chemotaxonomic characteristics, strain R17H11 represents a novel species in the genus Gramella , for which the name Gramella antarctica sp. nov. is proposed. The type strain of the novel species is R17H11 (=GDMCC 1.1208=KCTC 52925).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002513
2017-12-05
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/358.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002513&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2005;55:391–394 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon J, Jo Y, Kim GJ, Choi H. Gramella lutea sp. nov., a novel species of the family Flavobacteriaceae isolated from marine sediment. Curr Microbiol 2015;71:252–258 [CrossRef][PubMed]
    [Google Scholar]
  3. Hameed A, Shahina M, Lin SY, Liu YC, Lai WA et al. Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2014;64:2675–2681 [CrossRef][PubMed]
    [Google Scholar]
  4. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Dobretsov S et al. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2005;55:2497–2500 [CrossRef][PubMed]
    [Google Scholar]
  5. Park S, Kim S, Jung YT, Yoon JH. Gramella aquimixticola sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2015;65:4244–4249 [CrossRef][PubMed]
    [Google Scholar]
  6. Shahina M, Hameed A, Lin SY, Lee RJ, Lee MR et al. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie van Leeuwenhoek 2014;105:771–779 [CrossRef][PubMed]
    [Google Scholar]
  7. Liu K, Li S, Jiao N, Tang K. Gramella flava sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 2014;64:165–168 [CrossRef][PubMed]
    [Google Scholar]
  8. Jeong SH, Jin HM, Jeon CO. Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. Int J Syst Evol Microbiol 2013;63:2872–2878 [CrossRef][PubMed]
    [Google Scholar]
  9. Park JM, Park S, Won SM, Jung YT, Shin KS et al. Gramella aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015;65:1262–1267 [CrossRef][PubMed]
    [Google Scholar]
  10. Park S, Yoon SY, Jung YT, Won SM, Yoon JH. Gramella sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:2704–2710 [CrossRef][PubMed]
    [Google Scholar]
  11. Nedashkovskaya OI, Kim SB, Bae KS. Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2010;60:2799–2802 [CrossRef][PubMed]
    [Google Scholar]
  12. Cho SH, Chae SH, Cho M, Kim TU, Choi S et al. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int J Syst Evol Microbiol 2011;61:2654–2658 [CrossRef][PubMed]
    [Google Scholar]
  13. Joung Y, Kim H, Jang T, Ahn TS, Joh K. Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. J Microbiol 2011;49:1022–1026 [CrossRef][PubMed]
    [Google Scholar]
  14. Hameed A, Shahina M, Lin SY, Liu YC, Lai WA et al. Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 2014;64:2675–2681 [CrossRef][PubMed]
    [Google Scholar]
  15. Shahina M, Hameed A, Lin SY, Lee RJ, Lee MR et al. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie Van Leeuwenhoek 2014;105:771–779 [CrossRef][PubMed]
    [Google Scholar]
  16. Panschin I, Huang S, Meier-Kolthoff JP, Tindall BJ, Rohde M et al. Comparing polysaccharide decomposition between the type strains Gramella echinicola KMM 6050T (DSM 19838T) and Gramella portivictoriae UST040801-001T (DSM 23547T), and emended description of Gramella echinicola Nedashkovskaya et al. 2005 emend. Shahina et al. 2014 and Gramella portivictoriae Lau et al. 2005. Stand Genomic Sci 2016;11:16 [CrossRef]
    [Google Scholar]
  17. Tang K, Lin Y, Han Y, Jiao N. Characterization of potential polysaccharide utilization systems in the marine bacteroidetes Gramella flava JLT2011 using a multi-omics approach. Front Microbiol 2017;8:13 [CrossRef][PubMed]
    [Google Scholar]
  18. Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. Isme J 2017;11:1640–1650 [CrossRef][PubMed]
    [Google Scholar]
  19. Kabisch A, Otto A, König S, Becher D, Albrecht D et al. Functional characterization of polysaccharide utilization loci in the marine bacteroidetes 'Gramella forsetii' KT0803. Isme J 2014;8:1492–1502 [CrossRef][PubMed]
    [Google Scholar]
  20. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) New York: Green Publishing and Wiley-Interscience; 1987
  21. Chen WP, Kuo TT. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 1993;21:2260 [CrossRef][PubMed]
    [Google Scholar]
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  27. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  28. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007; pp.330–393
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  31. Panschin I, Becher M, Verbarg S, Spröer C, Rohde M et al. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of Gramella gaetbulicola Cho et al. 2011. Int J Syst Evol Microbiol 2017;67:697–703 [CrossRef][PubMed]
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  33. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002513
Loading
/content/journal/ijsem/10.1099/ijsem.0.002513
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error