1887

Abstract

A novel actinomycete strain PS42-9, which formed short chains of spores borne on the tip of long sporophores arising from the substrate mycelium, was isolated from soil in Phu-Sang National Park, Phayao province, Thailand. The isolate contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars of strain PS42-9 were glucose, madurose, mannose, rhamnose and ribose. The characteristic phospholipids were phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylethanolamine and ninhydrin-positive glycophospholipids. The major menaquinone was MK-10(H4). The main cellular fatty acids were C17 : 1ω8c and C17 : 0. The G+C content of the genomic DNA was 71.5 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain PS42-9 should be classified in the genus Herbidospora and was closely related to Herbidospora sakaeratensis DMKUA 205 (99.10 %) and Herbidospora yilanensis NBRC 106371 (98.61 %). The result of DNA–DNA hybridization and some physiological and biochemical properties indicated that strain PS42-9 could be readily distinguished from its closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, this strain represents a novel species, for which the name Herbidospora soli sp. nov. is proposed. The type strain is PS42-9 (=BCC 46909=NBRC 108780).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002503
2017-11-21
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/294.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002503&mimeType=html&fmt=ahah

References

  1. Kudo T, Itoh T, Miyadoh S, Shomura T, Seino A. Herbidospora gen. nov., a new genus of the family Streptosporangiaceae Goodfellow et al. 1990. Int J Syst Bacteriol 1993; 43: 319– 328 [CrossRef] [PubMed]
    [Google Scholar]
  2. Tseng M, Yang SF, Yuan GF. Herbidospora yilanensis sp. nov. and Herbidospora daliensis sp. nov., from sediment. Int J Syst Evol Microbiol 2010; 60: 1168– 1172 [CrossRef] [PubMed]
    [Google Scholar]
  3. Boondaeng A, Suriyachadkun C, Ishida Y, Tamura T, Tokuyama S et al. Herbidospora sakaeratensis sp. nov., isolated from soil, and reclassification of Streptosporangium claviforme as a later synonym of Herbidospora cretacea. Int J Syst Evol Microbiol 2011; 61: 777– 780 [CrossRef] [PubMed]
    [Google Scholar]
  4. Ara I, Tsetseg B, Daram D, Suto M, Ando K. Herbidospora mongoliensis sp. nov., isolated from soil, and reclassification of Herbidospora osyris and Streptosporangium claviforme as synonyms of Herbidospora cretacea. Int J Syst Evol Microbiol 2012; 62: 2322– 2329 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65: 501– 509 [CrossRef]
    [Google Scholar]
  6. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  7. Thawai C, Tanasupawat S, Itoh T, Suwanborirux K, Suzuki K et al. Micromonospora eburnea sp. nov., isolated from a Thai peat swamp forest. Int J Syst Evol Microbiol 2005; 55: 417– 422 [CrossRef] [PubMed]
    [Google Scholar]
  8. Waksman SA. The Actinomycetes. In Classification, Identification and Description of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  9. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  10. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  11. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiologyvol. 4 London: Academic Press; 1971; pp. 295– 334
    [Google Scholar]
  12. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  13. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30: 131– 134 [CrossRef]
    [Google Scholar]
  14. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  15. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  16. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  17. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42: 989– 1005 [CrossRef]
    [Google Scholar]
  18. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88: 200– 204 [CrossRef] [PubMed]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  20. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54: 31– 36 [PubMed] [Crossref]
    [Google Scholar]
  21. Tamaoka J. Determination of DNA base composition. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp. 463– 470
    [Google Scholar]
  22. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015; 65: 1456– 1461 [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  26. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1972; 20: 406– 416 [CrossRef]
    [Google Scholar]
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002503
Loading
/content/journal/ijsem/10.1099/ijsem.0.002503
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error