1887

Abstract

Three alkaliphilic and halotolerant bacterial strains, designated ZV-19, R4-8 and S4-12, were isolated from the water of soda pans located in the Kiskunság National Park, Hungary. Cells of all three strains were Gram-staining-negative, rod-shaped, motile and non-endospore-forming. They were facultatively anaerobic, and oxidase- and catalase-positive. Their major isoprenoid quinone was Q-8, and their predominant fatty acids were C18 : 1ω7c, C16 : 1ω7c and C16 : 0. The DNA G+C content was 54.5 mol% in strain ZV-19 and 45.8 mol% in strain R4-8. The 16S rRNA gene based phylogenetic analysis showed that all three strains were members of the genus Nitrincola (family Oceanospirillaceae, class Gammaproteobacteria). Strain ZV-19 showed 96.6 and 95.5 % sequence similarities and 19±3 and 18±3 % DNA–DNA relatedness to Nitrincola lacisaponensis DSM 16316 and Nitrincola alkalisediminis JCM 19317, respectively. Strains R4-8 and S4-12 exhibited 97.9 and 98.6 % sequence matches and 34±4 and 13±8 % DNA–DNA hybridization values with N. lacisaponensis DSM 16316 and N. alkalisediminis JCM 19317, respectively. According to the phenotypic, chemotaxonomic and phylogenetic data, the strains studied represent two novel species, Nitrincola alkalilacustris sp. nov. with the type strain ZV-19 (=DSM 29817=NCAIM B 02612) and Nitrincola schmidtii sp. nov. with the type strain R4-8 (=DSM 100788=NCAIM B.02626). An emended description of the genus Nitrincola is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002437
2017-10-23
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5159.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002437&mimeType=html&fmt=ahah

References

  1. Dimitriu PA, Shukla SK, Conradt J, Márquez MC, Ventosa A et al. Nitrincola lacisaponensis gen. nov., sp. nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Microbiol 2005;55:2273–2278 [CrossRef][PubMed]
    [Google Scholar]
  2. Joshi A, Thite S, Kulkarni G, Dhotre D, Joseph N et al. Nitrincola alkalisediminis sp. nov., an alkaliphilic bacterium isolated from an alkaline lake. Int J Syst Evol Microbiol 2016;66:1254–1259 [CrossRef][PubMed]
    [Google Scholar]
  3. Singh A, Vaidya B, Tanuku NR, Pinnaka AK. Nitrincola nitratireducens sp. nov. isolated from a haloalkaline crater lake. Syst Appl Microbiol 2015;38:555–562 [CrossRef][PubMed]
    [Google Scholar]
  4. Valdés N, Rivera-Araya J, Bijman J, Escudero L, Demergasso C et al. Draft genome sequence of Nitrincola sp. strain A-D6, an arsenic-resistant gammaproteobacterium isolated from a salt flat. Genome Announc 2014;2:e01144-14 [CrossRef][PubMed]
    [Google Scholar]
  5. Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E. Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 2010;14:339–348 [CrossRef][PubMed]
    [Google Scholar]
  6. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC et al. Microbiology of Lonar Lake and other soda lakes. ISME J 2013;7:468–476 [CrossRef][PubMed]
    [Google Scholar]
  7. Borsodi AK, Knáb M, Czeibert K, Márialigeti K, Vörös L et al. Planktonic bacterial community composition of an extremely shallow soda pond during a phytoplankton bloom revealed by cultivation and molecular cloning. Extremophiles 2013;17:575–584 [CrossRef][PubMed]
    [Google Scholar]
  8. Matyugina EB, Borzenko SV, Matafonov PV, Belkova NL. A laboratory experiment for meromixis in an integrated sample of soda lake Doroninskoye (Transbaikalia). Curr Res Microbiol Biotechnol 2014;2:398–401
    [Google Scholar]
  9. Grant WD, Jones BE. Bacteria, Archaea and Viruses of soda lakes. In Schagerl M. (editor) Soda Lakes of East Africa Springer International Publishing; 2016; pp.97–147
    [Google Scholar]
  10. Boros E, Horváth Z, Wolfram G, Vörös L. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann Limnol Int J Lim 2014;50:59–69 [CrossRef]
    [Google Scholar]
  11. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  12. Heimbrook ME, Wang WL, Campbell G. Staining bacterial flagella easily. J Clin Microbiol 1989;27:2612–2615[PubMed]
    [Google Scholar]
  13. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  14. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.603–711
    [Google Scholar]
  15. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992;72:315–321 [CrossRef]
    [Google Scholar]
  16. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  17. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  18. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997;47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  20. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 2008;58:976–981 [CrossRef][PubMed]
    [Google Scholar]
  21. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  23. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  24. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; (in press)
    [Google Scholar]
  25. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  27. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  28. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  29. Meyer W, Lieckfeldt E, Kuhls K, Freedman EZ, Börner T et al. DNA- and PCR-fingerprinting in fungi. EXS 1993;67:311–320[PubMed]
    [Google Scholar]
  30. Valério E, Pereira P, Saker ML, Franca S, Tenreiro R. Molecular characterization of Cylindrospermopsis raciborskii strains isolated from Portuguese freshwaters. Harmful Algae 2005;4:1044–1052 [CrossRef]
    [Google Scholar]
  31. Schumann P, Pukall R. The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol 2013;36:369–375 [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002437
Loading
/content/journal/ijsem/10.1099/ijsem.0.002437
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error