1887

Abstract

Three isolates of a previously reported novel catalase-negative, Gram-stain-positive, coccoid, alpha-haemolytic, Streptococcus species that were associated with meningoencephalitis in naïve weanling mice were further evaluated to confirm their taxonomic status and to determine additional phenotypic and molecular characteristics. Comparative 16S rRNA gene sequence analysis showed nearly identical intra-species sequence similarity (≥99.9 %), and revealed the closest phylogenetically related species, Streptococcus acidominimus and Streptococcuscuniculi, with 97.0 and 97.5 % sequence similarity, respectively. The rpoB, sodA and recN genes were identical for the three isolates and were 87.6, 85.7 and 82.5 % similar to S. acidominimus and 89.7, 86.2 and 80.7 % similar to S. cuniculi , respectively. In silico DNA–DNA hybridization analyses of mouse isolate 12-5202 against S. acidominimus CCUG 27296 and S. cuniculi CCUG 65085 produced estimated values of 26.4 and 25.7 % relatedness, and the calculated average nucleotide identity values were 81.9 and 81.7, respectively. These data confirm the taxonomic status of 12-5202 as a distinct Streptococcus species, and we formally propose the type strain, Streptococcus azizii 12-5202 (=CCUG 69378=DSM 103678). The genome of Streptococcus azizii sp. nov. 12-5202 contains 2062 total genes with a size of 2.34 Mbp, and an average G+C content of 42.76 mol%.

Keyword(s): firmicutes , mice , Streptococcus and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002407
2017-10-12
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5032.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002407&mimeType=html&fmt=ahah

References

  1. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
    [Google Scholar]
  2. Braden GC, Arbona RR, Lepherd M, Monette S, Toma A et al. A novel α-hemolytic Streptococcus species (Streptococcus azizii sp. nov.) associated with meningoencephalitis in naïve weanling C57BL/6 mice. Comp Med 2015; 65: 186– 195 [PubMed]
    [Google Scholar]
  3. Ayers SH, Mudge CS. The streptococci of the bovine udder. J Infect Dis 1922; 31: 40– 50 [Crossref]
    [Google Scholar]
  4. Vela AI, Sánchez del Rey V, Zamora L, Casamayor A, Domínguez L et al. Streptococcus cuniculi sp. nov., isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 2014; 64: 2486– 2490 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114– 2120 [CrossRef] [PubMed]
    [Google Scholar]
  6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455– 477 [CrossRef] [PubMed]
    [Google Scholar]
  7. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39: W29– W37 [CrossRef] [PubMed]
    [Google Scholar]
  8. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  9. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068– 2069 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100– 3108 [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 2016; 44: D694– D697 [CrossRef] [PubMed]
    [Google Scholar]
  12. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44: W16– W21 [CrossRef] [PubMed]
    [Google Scholar]
  13. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792– 1797 [CrossRef] [PubMed]
    [Google Scholar]
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  15. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000; 16: 276– 277 [CrossRef] [PubMed]
    [Google Scholar]
  16. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249– 266 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635– 645 [CrossRef] [PubMed]
    [Google Scholar]
  20. Drancourt M, Roux V, Fournier PE, Raoult D. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol 2004; 42: 497– 504 [CrossRef] [PubMed]
    [Google Scholar]
  21. Poyart C, Quesne G, Coulon S, Berche P, Trieu-Cuot P. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol 1998; 36: 41– 47 [PubMed]
    [Google Scholar]
  22. Glazunova OO, Raoult D, Roux V. Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 2009; 59: 2317– 2322 [CrossRef] [PubMed]
    [Google Scholar]
  23. Glazunova OO, Raoult D, Roux V. Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus. Int J Syst Evol Microbiol 2010; 60: 2140– 2148 [CrossRef] [PubMed]
    [Google Scholar]
  24. Shewmaker PL, Whitney AM, Humrighouse BW. Phenotypic, genotypic, and antimicrobial characteristics of Streptococcus halichoeri isolates from humans, proposal to rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and description of Streptococcus halichoeri subsp. hominis subsp. nov., a bacterium associated with human clinical infections. J Clin Microbiol 2016; 54: 739– 744 [CrossRef] [PubMed]
    [Google Scholar]
  25. Bentley RW, Leigh JA, Collins MD. Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 1991; 41: 487– 494 [CrossRef] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  28. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25: 1422– 1423 [CrossRef] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  30. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421 [CrossRef] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2015; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  33. Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 1995; 8: 479– 495 [PubMed]
    [Google Scholar]
  34. Facklam RR, Washington II JA. Streptococcus and related catalase-negative, gram-positive cocci. In Balows A, WJ HauslerJr, Herrmann K, Isenberg HD, Shadomy HJ et al. (editors) Manual of Clinical Microbiology, 5th ed. Washington, DC: American Society for Microbiology; 1991; pp. 238– 257
    [Google Scholar]
  35. CLSI Performance Standards for Antimicrobial Susceptibility Testing, M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002407
Loading
/content/journal/ijsem/10.1099/ijsem.0.002407
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error