1887

Abstract

A Gram-stain-positive, pink-pigmented, coccus-shaped, strictly aerobic, non-motile bacterium, strain THG-AG1.5, was isolated from rhizosphere of Hibiscus syriacus L. (Mugunghwa flower) located in Kyung Hee University, Yongin, Gyeonggi, Republic of Korea. The isolated strain grew optimally at 25–30 °C, at pH 6.0–7.5 and in the presence of additional 0–1.5 % (w/v) NaCl. Strain THG-AG1.5 exhibited tolerance to UV radiation (>1500 J m) and to gamma radiation (>12 kGy). Based on 16S rRNA gene sequence comparisons, strain THG-AG1.5 was closely related to Deinococcus daejeonensis MJ27 (98.03 %), Deinococcus radiotolerans C1 (97.61 %) and Deinococcus grandis DSM 3963 (97.32 %). The genomic DNA G+C content of strain THG-AG1.5 was 74.8 mol%. The DNA–DNA hybridization values between strain THG-AG1.5 and its closest phylogenetically neighbours were below 63.0 %. The peptidoglycan amino acids were alanine, valine, glutamic acid, glycine, ornithine, lysine and aspartic acid. Strain THG-AG1.5 contained ribose, mannose and glucose as whole-cell-wall sugars and menaquinone-8 (MK-8) as the only isoprenoid quinone. The major component in the polyamine pattern was spermidine. The major polar lipids of strain THG-AG1.5 were a phosphoglycolipid, six unidentified glycolipids and an unidentified aminophospholipid. The major fatty acids were identified as iso-C15 : 0, C15 : 1ω6c, C16 : 0, iso-C17 : 0, C17 : 0, C18 : 0 and summed feature 3. On the basis of our polyphasic taxonomy study, strain THG-AG1.5 represents a novel species within the genus Deinococcus , for which the name Deinococcus hibisci sp. nov. is proposed. The type strain is THG-AG1.5 (=KACC 18850=CCTCC AB 2016078).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002405
2017-11-02
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/28.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002405&mimeType=html&fmt=ahah

References

  1. Brooks BW, Murray RGE. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 31: 353– 360 [CrossRef]
    [Google Scholar]
  2. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, da Costa MS. Phylogenetic diversity of the Deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 1997; 47: 510– 514 [CrossRef] [PubMed]
    [Google Scholar]
  3. Battista JR, Rainey FA, Genus I. Deinococcus Brooks and Murray 1981, 354, VP emend. Rainey, Nobre, Schumann, Stackebrandt and da Costa 1997, 513. In Garrity GM. (editor) Bergey's Manual of Systematics of Bacteriology, 2nd ed.vol. 1 New York, NY: Springer; 2001; pp. 396– 402
    [Google Scholar]
  4. Gerber E, Bernard R, Castang S, Chabot N, Coze F et al. Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools. J Appl Microbiol 2015; 119: 1– 10 [CrossRef] [PubMed]
    [Google Scholar]
  5. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 1997; 47: 939– 947 [CrossRef] [PubMed]
    [Google Scholar]
  6. Im WT, Jung HM, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008; 58: 2348– 2353 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kämpfer P, Lodders N, Huber B, Falsen E, Busse HJ. Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 2008; 58: 2803– 2806 [CrossRef] [PubMed]
    [Google Scholar]
  8. Joo ES, Lee JJ, Kang MS, Lim S, Jeong SW et al. Deinococcus actinosclerus sp. nov., a novel bacterium isolated from soil of a rocky hillside. Int J Syst Evol Microbiol 2016; 66: 1003– 1008 [Crossref]
    [Google Scholar]
  9. Lee JJ, Lee HJ, Jang GS, Yu JM, Cha JY et al. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. J Microbiol 2013; 51: 305– 311 [CrossRef] [PubMed]
    [Google Scholar]
  10. Rainey FA, Ferreira M, Nobre MF, Ray K, Bagaley D et al. Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol 2007; 57: 1408– 1412 [CrossRef] [PubMed]
    [Google Scholar]
  11. Peng F, Zhang L, Luo X, Dai J, An H et al. Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2009; 59: 709– 713 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yuan M, Zhang W, Dai S, Wu J, Wang Y et al. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 2009; 59: 1513– 1517 [CrossRef] [PubMed]
    [Google Scholar]
  13. Asker D, Awad TS, Beppu T, Ueda K. Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 2009; 59: 144– 149 [CrossRef] [PubMed]
    [Google Scholar]
  14. Asker D, Awad TS, Mclandsborough L, Beppu T, Ueda K. Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. Int J Syst Evol Microbiol 2011; 61: 1448– 1453 [CrossRef] [PubMed]
    [Google Scholar]
  15. Lai WA, Kämpfer P, Arun AB, Shen FT, Huber B et al. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 2006; 56: 787– 791 [CrossRef] [PubMed]
    [Google Scholar]
  16. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74: 2461– 2470 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  20. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8: 87– 91 [CrossRef]
    [Google Scholar]
  25. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al. (editors) Current Protocols in Molecular Biology New York, NY: Wiley; 1995; pp. 2– 11
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  28. Callegan RP, Nobre MF, Mcternan PM, Battista JR, Navarro-González R et al. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 2008; 58: 1252– 1258 [CrossRef] [PubMed]
    [Google Scholar]
  29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  30. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [CrossRef]
    [Google Scholar]
  31. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45: 316– 354 [PubMed]
    [Google Scholar]
  32. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123: 31– 36 [PubMed]
    [Google Scholar]
  33. Srinivasan S, Kim MK, Lim S, Joe M, Lee M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 2012; 62: 1265– 1270 [CrossRef] [PubMed]
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  35. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  36. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  37. Staneck JL, Roberts GD. Simplified approach to identification of aerobic Actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  40. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000; 745: 431– 437 [CrossRef] [PubMed]
    [Google Scholar]
  41. Anderson R, Hansen K. Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 1985; 260: 12219– 12223 [PubMed]
    [Google Scholar]
  42. Counsell TJ, Murray RGE. Polar lipid profiles of the genus Deinococcus. Int J Syst Bacteriol 1986; 36: 202– 206 [CrossRef]
    [Google Scholar]
  43. Cha S, Srinivasan S, Seo T, Kim MK. Deinococcus radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Antonie van Leeuwenhoek 2014; 105: 229– 235 [CrossRef] [PubMed]
    [Google Scholar]
  44. Ahmed I, Abbas S, Kudo T, Iqbal M, Fujiwara T et al. Deinococcus citri sp. nov., isolated from citrus leaf canker lesions. Int J Syst Evol Microbiol 2014; 64: 4134– 4140 [CrossRef] [PubMed]
    [Google Scholar]
  45. de Groot A, Chapon V, Servant P, Christen R, Saux MF et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005; 55: 2441– 2446 [CrossRef] [PubMed]
    [Google Scholar]
  46. Hamana K. Polyamine distribution patterns in aerobic gram-positive cocci and some radio-resistant bacteria. J Gen Appl Microbiol 1994; 40: 181– 195 [CrossRef]
    [Google Scholar]
  47. Oyaizu H, Stackebrandt E, Schleifer KH, Ludwig W, Pohla H et al. A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Evol Microbiol 1987; 37: 62– 67
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002405
Loading
/content/journal/ijsem/10.1099/ijsem.0.002405
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error