1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J16-2T3A, was isolated from beach soil on Jeju Island, South Korea. Strain 15J16-2T3A grew at 10–37 °C (optimum growth at 25 °C) and pH 6.5–8.5 (optimum growth at pH 7). Based on 16S rRNA gene phylogenetic analysis, the novel strain was closely related to members of the genus Spirosoma (94.8–89.9 % similarities) and formed a separate branch within the genus together with Spirosoma luteolum 16F6E in neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees. The G+C content of the genomic DNA of strain 15J16-2T3A was 47.6 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16 : 1ω7c/C16 : 1ω6c; 35.5 %), C16 : 1ω5c (26.6 %), and iso C15 : 0 (10.1 %) as the major components, phosphatidylethanolamine and unidentified aminophospholipid as the major polar lipids also support the affiliation of strain 15J16-2T3A with the genus Spirosoma . The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J16-2T3A from members the genus Spirosoma . On the basis of its phenotypic properties and phylogenetic distinctiveness, strain 15J16-2T3A represents a novel species of the genus Spirosoma , for which the name Spirosoma litoris sp. nov. is proposed. The type strain is 15J16-2T3A (=KCTC 52029=JCM 31999)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002394
2017-10-23
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4986.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002394&mimeType=html&fmt=ahah

References

  1. Larkin JM, Borrall R. Family I. Spirosomaceae Larkin and Borrall 1978, 595AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 1 Baltimore: Williams & Wilkins; 1978; pp. 125– 126
    [Google Scholar]
  2. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2009; 59: 839– 844 [CrossRef] [PubMed]
    [Google Scholar]
  3. Ahn JH, Weon HY, Kim SJ, Hong SB, Seok SJ et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014; 64: 3230– 3234 [CrossRef] [PubMed]
    [Google Scholar]
  4. Lee JJ, Lee YH, Park SJ, Lee SY, Kim BO et al. Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 2017; 67: 1359– 1365 [CrossRef] [PubMed]
    [Google Scholar]
  5. Li Y, Ai MJ, Sun Y, Zhang YQ, Zhang JQ. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2017; 67: 3144– 3149 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lee JJ, Park SJ, Lee YH, Lee SY, Park S et al. Spirosoma luteolum sp. nov. isolated from water. J Microbiol 2017; 55: 247– 252 [CrossRef] [PubMed]
    [Google Scholar]
  7. Oren A, Garrity GM. List of novel names and novel combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67: 2075– 2078 [CrossRef] [PubMed]
    [Google Scholar]
  8. Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67: 532– 536 [CrossRef] [PubMed]
    [Google Scholar]
  9. Joo ES, Lee JJ, Cha S, Jheong W, Seo T et al. Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province, South Korea. J Microbiol 2015; 53: 750– 755 [CrossRef] [PubMed]
    [Google Scholar]
  10. Yang SS, Tang K, Zhang X, Wang J, Wang X et al. Spirosoma soli sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2016; 66: 5568– 5574 [CrossRef] [PubMed]
    [Google Scholar]
  11. Chang X, Jiang F, Wang T, Kan W, Qu Z et al. Spirosoma arcticum sp. nov., isolated from high arctic glacial till. Int J Syst Evol Microbiol 2014; 64: 2233– 2237 [CrossRef] [PubMed]
    [Google Scholar]
  12. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Spirosoma aerophilum sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2016; 66: 2342– 2346 [CrossRef] [PubMed]
    [Google Scholar]
  23. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  26. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575– 580 [PubMed]
    [Google Scholar]
  27. Agarwal S, Hunnicutt DW, Mcbride MJ. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci USA 1997; 94: 12139– 12144 [CrossRef] [PubMed]
    [Google Scholar]
  28. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 9th ed. San Francisco, USA: Benjamin Cummings; 2010
    [Google Scholar]
  29. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology Supplement 27 USA: Jonh Wiley & Sons, Inc; 1997; pp. 2.4.1– 2.4.2
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  31. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59: 331– 335 [CrossRef] [PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  34. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 205 [Crossref]
    [Google Scholar]
  35. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [CrossRef]
    [Google Scholar]
  36. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina del Rio T et al. Complete genome sequence of Spirosoma linguale type strain (1). Stand Genomic Sci 2010; 2: 176– 184 [CrossRef] [PubMed]
    [Google Scholar]
  37. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002394
Loading
/content/journal/ijsem/10.1099/ijsem.0.002394
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error