1887

Abstract

A novel bacterium, designated strain DL503, was isolated from a Daqu sample and its taxonomic position determined using a polyphasic taxonomy. Strain DL503 was a Gram-stain-negative, facultatively anaerobic, non-sporulating, motile and coccoid-rod-shaped bacterium. Optimum growth occurred at 20–45 °C, pH 5.0–10.0 and 1.5 % (w/v) NaCl. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the genus Franconibacter , showing highest levels of similarity with respect to Franconibacter pulveris JCM 16471 (98.94 %) and Franconibacter helveticus DSM 18396 (98.39 %). Cells contained the quinones Q-8 and MK-8, and the polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified polar lipids and three unidentified amino lipids. The DNA G+C content was 53.3 mol% and the major fatty acids were C16 : 0, C17 : 0 cyclo, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 4 (C17 : 1 iso I and/or C17 : 1 anteiso B) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The DNA–DNA relatedness values between strain DL503 and its close relatives, including F. pulveris JCM 16471 and F. helveticus DSM 18396, were 51.5±0.5 % and 45.2±1.1 %, respectively. Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the isolate represents a novel species of the genus Franconibacter , for which the name Franconibacter daqui sp. nov. is proposed. The type strain is DL503 (=LMG 29914=CGMCC 1.15944).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002358
2017-10-16
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4962.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002358&mimeType=html&fmt=ahah

References

  1. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V et al. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol 2014; 64: 3402– 3410 [CrossRef] [PubMed]
    [Google Scholar]
  2. Brady C, Cleenwerck I, Venter S, Coutinho T, de Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013; 36: 309– 319 [CrossRef] [PubMed]
    [Google Scholar]
  3. Zhang C, Ao Z, Chui W, Shen C, Tao W et al. Characterization of the aroma-active compounds in Daqu: a tradition Chinese liquor starter. Eur Food Res Technol 2012; 234: 69– 76 [CrossRef]
    [Google Scholar]
  4. Li P, Li S, Cheng L, Luo L. Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar. Appl Microbiol Biotechnol 2014; 98: 6073– 6084 [CrossRef] [PubMed]
    [Google Scholar]
  5. Zheng X-W, Tabrizi MR, Nout MJR, Han B-Z. Daqu- a traditional Chinese liquor fermentation starter. J Inst Brew 2011; 117: 82– 90 [CrossRef]
    [Google Scholar]
  6. Wang HY, Xu Y. Effect of temperature on microbial composition of starter culture for Chinese light aroma style liquor fermentation. Lett Appl Microbiol 2015; 60: 85– 91 [CrossRef] [PubMed]
    [Google Scholar]
  7. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  8. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89: 5685– 5689 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  16. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  17. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  18. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  19. Stephan R, van Trappen S, Cleenwerck I, Iversen C, Joosten H et al. Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int J Syst Evol Microbiol 2008; 58: 237– 241 [CrossRef] [PubMed]
    [Google Scholar]
  20. Stephan R, van Trappen S, Cleenwerck I, Vancanneyt M, de Vos P et al. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 2007; 57: 820– 826 [CrossRef] [PubMed]
    [Google Scholar]
  21. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  22. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  24. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  25. Gu JY, Zang SG, Sheng XF, He LY, Huang Z et al. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface. Int J Syst Evol Microbiol 2015; 65: 1031– 1037 [CrossRef] [PubMed]
    [Google Scholar]
  26. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20: 16
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamaoka J, Katayama-Fujimura J, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983; 54: 31– 36 [PubMed]
    [Google Scholar]
  29. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47: 87– 95 [CrossRef]
    [Google Scholar]
  30. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002358
Loading
/content/journal/ijsem/10.1099/ijsem.0.002358
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error