1887

Abstract

Gram-negative, spiral or curved rod-shaped cells of a bacterial strain, designated ZC80, were isolated from a rock salt sample collected at Yunnan salt mine, China. Analysis of the strain's 16S rRNA gene sequence revealed a clear affiliation of this novel strain within the family Rhodospirillaceae . Strain ZC80 formed a robust cluster with Pelagibius litoralis CL-UU02 at a 16S rRNA gene sequence similarity level of 88.1 %. Strain ZC80 shared no more than 91.0 % 16S rRNA gene sequence similarity with the type strains of other species in the family Rhodospirillaceae . Strain ZC80 was able to grow in the presence of 2–15 % (w/v) NaCl, and grew at 10–50 °C and pH 6.0–10.0. The major fatty acids were C19 : 0 cyclo ω8c (41.3 %). The major isoprenoid quinone was ubiquinone 10 (Q-10). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and an unidentified aminolipid. The DNA G+C content of strain ZC80 was 60.8 mol%. On the basis of phylogenetic analyses and chemotaxonomic and physiological data, strain ZC80 is considered to represent a novel species of a new genus in the family Rhodospirillaceae , for which the name Marivibrio halodurans gen. nov., sp. nov. is proposed. The type strain of Marivibrio halodurans is ZC80 (=CGMCC 1.15697=NBRC 112461).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002309
2017-09-18
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4266.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002309&mimeType=html&fmt=ahah

References

  1. Wang ZG, Wang YX, Liu JH, Chen YG, Zhang XX et al. Fodinibacter luteus gen. nov., sp. nov., an actinobacterium isolated from a salt mine. Int J Syst Evol Microbiol 2009; 59: 2185– 2190 [CrossRef] [PubMed]
    [Google Scholar]
  2. Wang YX, Liu JH, Zhang XX, Chen YG, Wang ZG et al. Fodinicurvata sediminis gen. nov., sp. nov. and Fodinicurvata fenggangensis sp. nov., poly-β-hydroxybutyrate-producing bacteria in the family Rhodospirillaceae. Int J Syst Evol Microbiol 2009; 59: 2575– 2581 [CrossRef] [PubMed]
    [Google Scholar]
  3. Wang YX, Wang ZG, Liu JH, Chen YG, Zhang XX et al. Sediminimonas qiaohouensis gen. nov., sp. nov., a member of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 2009; 59: 1561– 1567 [CrossRef] [PubMed]
    [Google Scholar]
  4. Liu JH, Wang YX, Zhang XX, Wang ZG, Chen YG et al. Salinarimonas rosea gen. nov., sp. nov., a new member of the alpha-2 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 2010; 60: 55– 60 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wang YX, Liu JH, Xiao W, Zhang XX, Li YQ et al. Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. Int J Syst Evol Microbiol 2012; 62: 390– 396 [CrossRef] [PubMed]
    [Google Scholar]
  6. Wang YX, Liu JH, Xiao W, Ma XL, Lai YH et al. Aliifodinibius roseus gen. nov., sp. nov., and Aliifodinibius sediminis sp. nov., two moderately halophilic bacteria isolated from salt mine samples. Int J Syst Evol Microbiol 2013; 63: 2907– 2913 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen S, Liu HC, Zhou J, Xiang H. Haloparvum sedimenti gen. nov., sp. nov., a member of the family Haloferacaceae. Int J Syst Evol Microbiol 2016; 66: 2327– 2334 [CrossRef] [PubMed]
    [Google Scholar]
  8. Xiao W, Wang ZG, Wang YX, Schneegurt MA, Li ZY et al. Comparative molecular analysis of the prokaryotic diversity of two salt mine soils in southwest China. J Basic Microbiol 2013; 53: 942– 952 [CrossRef] [PubMed]
    [Google Scholar]
  9. Englen MD, Kelley LC. A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 2000; 31: 421– 426 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 175
    [Google Scholar]
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  15. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  16. Chen YG, Cui XL, Pukall R, Li HM, Yang YL et al. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 2007; 57: 2327– 2332 [CrossRef] [PubMed]
    [Google Scholar]
  17. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Microbiology Washington, DC: American Society for Microbiology; 1981; pp. 409– 443
    [Google Scholar]
  18. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  19. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47: 87– 95 [CrossRef]
    [Google Scholar]
  20. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  22. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54: 31– 36 [PubMed] [Crossref]
    [Google Scholar]
  23. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20: 16
    [Google Scholar]
  24. Park S, Park JM, Kang CH, Yoon JH. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64: 1841– 1846 [CrossRef] [PubMed]
    [Google Scholar]
  25. Satomi M, Kimura B, Hamada T, Harayama S, Fujii T. Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. no. Int J Syst Evol Microbiol 2002; 52: 739– 747 [CrossRef] [PubMed]
    [Google Scholar]
  26. Choi DH, Hwang CY, Cho BC. Pelagibius litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2009; 59: 818– 823 [CrossRef] [PubMed]
    [Google Scholar]
  27. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  28. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  29. Owen RJ, Hill LR. The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Skinner FA, Lovelock DW. (editors) Identification Methods for Microbiologists, 2nd ed. London: Academic Press; 1979; pp. 217– 296
    [Google Scholar]
  30. Han SB, Su Y, Hu J, Wang RJ, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016; 66: 1807– 1812 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002309
Loading
/content/journal/ijsem/10.1099/ijsem.0.002309
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error