1887

Abstract

Strain ATCC 33076, which produces the antibiotic ramoplanin, was isolated from a soil sample collected in India, and it was classified as a member of the genus Actinoplanes on the basis of morphology and cell-wall composition. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain forms a distinct clade within the genus Actinoplanes , and it is most closely related to Actinoplanes deccanensis IFO 13994 (98.71 % similarity) and Actinoplanes atraurantiacus Y16 (98.33 %). The strain forms an extensively branched substrate mycelium; the sporangia are formed very scantily and are globose with irregular surface. Spores are oval and motile. The cell wall contains meso-diaminopimelic acid and the diagnostic sugars are xylose and arabinose. The predominant menaquinone is MK-9(H6), with minor amounts of MK-9(H4) and MK-9(H2). Mycolic acids are absent. The diagnostic phospholipids are phosphatidylethanolamine, hydroxyphosphatidylethanolamine and phosphatidylglycerol. The major cellular fatty acids are anteiso-C17 : 0 and iso-C16 : 0, followed by iso-C15 :0 and moderate amounts of anteiso-C15 : 0, iso-C17 : 0 and C18 : 1 ω9c. The genomic DNA G+C content is 71.4 mol%. Significant differences in the morphological, chemotaxonomic and biochemical data, together with DNA–DNA relatedness between strain ATCC 33076 and closely related type strains, clearly demonstrated that strain ATCC 33076 represents a novel species of the genus Actinoplanes , for which the name Actinoplanes ramoplaninifer sp. nov. is proposed. The type strain is ATCC 33076 (=DSM 105064=NRRL B-65484).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002281
2017-09-14
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4181.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002281&mimeType=html&fmt=ahah

References

  1. Couch JN. Actinoplanes, a new genus of the Actinomycetales. J Elisha Mitchell Sci 1950;66:87–92
    [Google Scholar]
  2. Vobis G, Schäfer J, Kämpfer P. Actinoplanes. In Whitman WB. (editor) Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015; pp.1–41
    [Google Scholar]
  3. Tamura T, Hatano K. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and 'Actinoplanes aurantiacus' to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 2001;51:2119–2125 [CrossRef][PubMed]
    [Google Scholar]
  4. Lechevalier HA, Lechavalier MP. A critical evaluation of the genera of aerobic Actinomycetes. In Prauser H. (editor) The Actinomycetales Jena: Gustav Fischer Verlah; 1970; pp.395–405
    [Google Scholar]
  5. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 1977;5:249–260 [CrossRef]
    [Google Scholar]
  6. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 1990;136:19–36 [CrossRef]
    [Google Scholar]
  7. Stackebrandt E, Kroppenstedt RM. Union of the genera Actinoplanes couch, Ampullariella couch, and Amorphosporangium couch in a redefined genus Actinoplanes. Syst Appl Microbiol 1987;9:110–114 [CrossRef]
    [Google Scholar]
  8. Phongsopitanun W, Matsumoto A, Inahashi Y, Kudo T, Mori M et al. Actinoplanes lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 2016;66:468–473 [CrossRef][PubMed]
    [Google Scholar]
  9. Ngaemthao W, Chunhametha S, Suriyachadkun C. Actinoplanes subglobosus sp. nov., isolated from mixed deciduous forest soil. Int J Syst Evol Microbiol 2016;66:4850–4855 [CrossRef][PubMed]
    [Google Scholar]
  10. Cross T. Aquatic actinomycetes: a critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats. J Appl Bacteriol 1981;50:397–423 [CrossRef][PubMed]
    [Google Scholar]
  11. He H, Xing J, Liu C, Li C, Ma Z et al. Actinoplanes rhizophilus sp. nov., an actinomycete isolated from the rhizosphere of Sansevieria trifasciata Prain. Int J Syst Evol Microbiol 2015;65:4763–4768 [CrossRef][PubMed]
    [Google Scholar]
  12. Willoughby LG. A study on acquatic actinomycetes- the allochthonus leaf component. Nova Hedwigia 1969;18:45–113
    [Google Scholar]
  13. Willoughby LG. Observations on some aquatic Actinomycetes of streams and rivers. Freshw Biol 1971;1:23–27 [CrossRef]
    [Google Scholar]
  14. Madden AA, Grassetti A, Soriano JA, Starks PT. Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests. Environ Entomol 2013;42:703–710 [CrossRef][PubMed]
    [Google Scholar]
  15. Tian X, Cao L, Tan H, Han W, Chen M et al. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 2007;53:700–707 [CrossRef][PubMed]
    [Google Scholar]
  16. Parenti F, Coronelli C. Members of the genus Actinoplanes and their antibiotics. Annu Rev Microbiol 1979;33:389–411 [CrossRef][PubMed]
    [Google Scholar]
  17. Lazzarini A, Cavaletti L, Toppo G, Marinelli F. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 2001;79:399–405[PubMed]
    [Google Scholar]
  18. Marcone GL, Carrano L, Marinelli F, Beltrametti F. Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes. J Antibiot 2010;63:83–88 [CrossRef][PubMed]
    [Google Scholar]
  19. Demain AL, Lancini G. Bacterial pharmaceutical products. I. Symbiotic Associations, Biotechnology, Applied Microbiology. In Dworkin M. (editor) The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd ed. Berlin: Springer; 2006; pp.812–833
    [Google Scholar]
  20. Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F. A-16686, a new antibiotic from actinoplanes. I. fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot 1984;37:309–317 [CrossRef][PubMed]
    [Google Scholar]
  21. Walker S, Chen L, Hu Y, Rew Y, Shin D et al. Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 2005;105:449–476 [CrossRef][PubMed]
    [Google Scholar]
  22. Bassères E, Endres BT, Dotson KM, Alam MJ, Garey KW. Novel antibiotics in development to treat Clostridium difficile infection. Curr Opin Gastroenterol 2017;33:1–7 [CrossRef][PubMed]
    [Google Scholar]
  23. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  24. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA et al. Practical Streptomyces Genetics Norwich: John Innes Centre; 2000
    [Google Scholar]
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  32. Uchida K, Jang MS, Ohnishi Y, Horinouchi S, Hayakawa M et al. Characterization of Actinoplanes missouriensis spore flagella. Appl Environ Microbiol 2011;77:2559–2562 [CrossRef][PubMed]
    [Google Scholar]
  33. Dalmastri C, Gastaldo L, Marcone GL, Binda E, Congiu T et al. Classification of Nonomuraea sp. ATCC 39727, an actinomycete that produces the glycopeptide antibiotic A40926, as Nonomuraea gerenzanensis sp. nov. Int J Syst Evol Microbiol 2016;66:912–921 [CrossRef][PubMed]
    [Google Scholar]
  34. Waksman SA. Classification, identification, and description of genera and species. The Actinomycetes Baltimore, MD: The Williams & Wilkins Company; 1961; pp.328–334
    [Google Scholar]
  35. Maerz A, Paul MR. A Dictionary of Color, 2nd ed. New York: McGraw-Hill; 1950
    [Google Scholar]
  36. Goodfellow M, Alderson G, Lacey J. Numerical taxonomy of Actinomadura and related actinomycetes. J Gen Microbiol 1979;112:95–111 [CrossRef][PubMed]
    [Google Scholar]
  37. Brunati M, Bava A, Marinelli F, Lancini G. Influence of leucine and valine on ramoplanin production by Actinoplanes sp. ATCC 33076. J Antibiot 2005;58:473–478 [CrossRef][PubMed]
    [Google Scholar]
  38. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  39. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  40. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  41. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  42. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  43. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  44. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  45. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 1990;13:148–160 [CrossRef]
    [Google Scholar]
  46. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  47. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 1989;479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  48. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  49. de Ley J, Tijtgat R. Evaluation of membrane filter methods for DNA–DNA hybridization. Antonie van Leeuwenhoek 1970;36:461–474 [CrossRef][PubMed]
    [Google Scholar]
  50. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  51. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002281
Loading
/content/journal/ijsem/10.1099/ijsem.0.002281
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error