1887

Abstract

A novel exopolysaccharide-producing strain, designated as 5.12, was isolated from a sediment sample from the Southwest Indian Ridge, Indian Ocean. The strain was Gram-stain-negative, motile, strictly aerobic, and oxidase- and catalase-positive. It grew optimally at 35 °C, at pH 6.0 and in the presence of 3.5 % (w/v) NaCl. Its major isoprenoid quinone was ubiquinone-8 (Q-8) and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and C18 : 1ω7c were the major cellular fatty acids. The DNA G+C content was 46.1 mol%. 16S rRNA gene sequence analysis suggested that strain 5.12 is a member of the genus Alteromonas . Strain 5.12 exhibited close 16S rRNA gene sequence similarity to Alteromonas lipolytica JW12 (96.1 %), Alteromonas hispanica F-32 (95.9 %), Alteromonas confluentis DSSK2-12 (95.9 %), Alteromonas litorea TF-22 (95.6 %) and Alteromonas mediterranea DE (95.5 %). Strain 5.12 contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. Owing to significant differences in the 16S rRNA gene sequences, as well as the phenotypic and chemotaxonomic characteristics, the novel isolate described here merits classification as a representative of a novel species of the genus Alteromonas , for which the name Alteromonas pelagimontana sp. nov. is proposed. The type strain of this species is 5.12 (LMG 29661= MCC 3250).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002245
2017-09-14
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4032.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002245&mimeType=html&fmt=ahah

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972; 110: 402– 429 [PubMed]
    [Google Scholar]
  2. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67: 237– 242 [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009; 96: 259– 266 [CrossRef] [PubMed]
    [Google Scholar]
  4. Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW et al. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 2007; 57: 1209– 1216 [CrossRef] [PubMed]
    [Google Scholar]
  5. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005; 55: 1065– 1068 [CrossRef] [PubMed]
    [Google Scholar]
  6. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013; 103: 877– 884 [CrossRef] [PubMed]
    [Google Scholar]
  7. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015; 107: 119– 132 [CrossRef] [PubMed]
    [Google Scholar]
  8. Martinez-Checa F, Bejar V, Llamas I, Del Moral A, Quesada E et al. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acidproducing, halophilic bacterium isolated from Fuente de Piedra, Southern Spain. Int J Syst Evol Microbiol 2005; 55: 2385– 2390 [Crossref]
    [Google Scholar]
  9. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015; 65: 1498– 1503 [CrossRef] [PubMed]
    [Google Scholar]
  10. Park S, Kang CH, Won SM, Park JM, Kim BC et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015; 65: 3603– 3608 [CrossRef] [PubMed]
    [Google Scholar]
  11. Van Trappen S. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004; 54: 1157– 1163 [CrossRef]
    [Google Scholar]
  12. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved lists 1980). Int J Syst Evol Microbiol 2008; 58: 2589– 2596 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH et al. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53: 1625– 1630 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54: 1197– 1201 [CrossRef] [PubMed]
    [Google Scholar]
  15. Lanyi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  16. Khandeparkar RDS, Bhosle NB. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzyme Microb Technol 2006; 39: 732– 742 [CrossRef]
    [Google Scholar]
  17. Leon O, Quintana L, Peruzzo G, Slebe JC. Purification and Properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl Environ Microbiol 1992; 58: 4060– 4063 [PubMed]
    [Google Scholar]
  18. Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM et al. Genus I. Vibrio Pacini 1854, 411AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 The Proteobacteria, Part B: The Gammaproteobacteria, 2nd ed. New York: Springer; 2005; pp. 494– 546
    [Google Scholar]
  19. Leifson E. Determination of carbohydrate metabolism of marine Bacteria. J Bacteriol 1963; 85: 1183– 1184 [PubMed]
    [Google Scholar]
  20. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51: 1997– 2006 [CrossRef] [PubMed]
    [Google Scholar]
  21. Barry A I. Procedures and theoretical considerations for testing antimicrobial agents in agar media. In Lorain V. (editor) Antibiotics in Laboratory Medicine Philadelphia, PA: Lippincott William & Wilkins; 1980; pp. 10– 16
    [Google Scholar]
  22. Ostle AG, Holt JG. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 1982; 44: 238– 241 [PubMed]
    [Google Scholar]
  23. Sayyed RZ, Jamadar DD, Patel PR. Production of exo-polysaccharide by Rhizobium sp. Indian J Microbiol 2011; 51: 294– 300 [CrossRef] [PubMed]
    [Google Scholar]
  24. Rollefson JB, Stephen CS, Tien M, Bond DR. Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 2011; 193: 1023– 1033 [CrossRef] [PubMed]
    [Google Scholar]
  25. Sinha RK, Krishnan KP, Hatha AA, Rahiman M, Thresyamma DD et al. Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord. Braz J Microbiol 2017; 48: 51– 61 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic New York, NY: John Wiley and Sons; 1991; pp. 115– 175
    [Google Scholar]
  27. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  34. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  35. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  36. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  37. Komagata K, Suzuki K-I. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  40. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  41. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  42. López-Pérez E, Rodriguez-Valera F. The family Alteromonadaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al. (editors) The Prokaryotes-Gammaproteobacteria, 4th ed. New York, NY: Springer; 2014; pp. 69– 92
    [Google Scholar]
  43. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  44. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002245
Loading
/content/journal/ijsem/10.1099/ijsem.0.002245
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error