1887

Abstract

A Gram-stain-negative, cream-pigmented, aerobic, non-motile, non-spore-forming and short-rod-shaped bacterial strain, designated CAU 1123, was isolated from mud from reclaimed land. The strain’s taxonomic position was investigated by using a polyphasic approach. Strain CAU 1123 grew optimally at 37 °C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAU 1123 formed a monophyletic lineage within the family with 93.8 % or lower sequence similarity to representatives of the genera , , , and . The major fatty acids were C ω7 and 11-methyl C ω and the predominant respiratory quinone was Q-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 71.1 mol%. Based on the data from phenotypic, chemotaxonomic and phylogenetic studies, it is proposed that strain CAU 1123 represents a novel genus and novel species of the family , for which the name gen. nov., sp. nov. The type strain is CAU 1123 (=KCTC 52187, =NBRC 112522).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002200
2017-10-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3812.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002200&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Order VIII. Oceanospirillales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2005; pp.270[Crossref]
    [Google Scholar]
  2. Euze´by J. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006;56:1–6 [CrossRef][PubMed]
    [Google Scholar]
  3. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005;71:5665–5677 [CrossRef][PubMed]
    [Google Scholar]
  4. Lucena T, Ruvira MA, Garay E, Macián MC, Arahal DR et al. Actibacterium mucosum gen. nov., sp. nov., a marine alphaproteobacterium from Mediterranean seawater. Int J Syst Evol Microbiol 2012;62:2858–2864 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim SH, Yang HO, Shin YK, Kwon HC. Hasllibacter halocynthiae gen. nov., sp. nov., a nutriacholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int J Syst Evol Microbiol 2012;62:624–631 [CrossRef][PubMed]
    [Google Scholar]
  6. Wang H, Zhang X, Yan S, Qi Z, Yu Y et al. Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2012;62:223–228 [CrossRef][PubMed]
    [Google Scholar]
  7. Li Z, Qu Z, Zhang X, Zhang XH. Lentibacter algarum gen. nov., sp. nov., isolated from coastal water during a massive green algae bloom. Int J Syst Evol Microbiol 2012;62:1042–1047 [CrossRef][PubMed]
    [Google Scholar]
  8. Albuquerque L, Rainey FA, Nobre MF, da Costa MS. Oceanicella actignis gen. nov., sp. nov., a halophilic slightly thermophilic member of the Alphaproteobacteria. Syst Appl Microbiol 2012;35:385–389 [CrossRef][PubMed]
    [Google Scholar]
  9. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T et al. Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 2012;62:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  10. Romanenko LA, Tanaka N, Svetashev VI, Kalinovskaya NI. Poseidonocella pacifica gen. nov., sp. nov. and Poseidonocella sedimentorum sp. nov., novel alphaproteobacteria from the shallow sandy sediments of the Sea of Japan. Arch Microbiol 2012;194:113–121 [CrossRef][PubMed]
    [Google Scholar]
  11. Foesel BU, Drake HL, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 2011;34:498–502 [CrossRef][PubMed]
    [Google Scholar]
  12. Penesyan A, Breider S, Schumann P, Tindall BJ, Egan S et al. Epibacterium ulvae gen. nov., sp. nov., epibiotic bacteria isolated from the surface of a marine alga. Int J Syst Evol Microbiol 2013;63:1589–1596 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon JH, Lee SY, Jung YT, Lee JS, Lee KC et al. Litorisediminicola beolgyonensis gen. nov., sp. nov., isolated from a coastal sediment. Int J Syst Evol Microbiol 2013;63:2025–2031 [CrossRef][PubMed]
    [Google Scholar]
  14. Hahnke S, Tindall BJ, Schumann P, Simon M, Brinkhoff T et al. Pelagimonas varians gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 2013;63:835–843 [CrossRef][PubMed]
    [Google Scholar]
  15. Yin D, Chen L, Ao J, Ai C, Chen X. Pleomorphobacterium xiamenense gen. nov., sp. nov., a moderate thermophile isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 2013;63:1868–1873 [CrossRef][PubMed]
    [Google Scholar]
  16. Lai PY, Miao L, Lee OO, Liu LL, Zhou XJ et al. Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia. Int J Syst Evol Microbiol 2013;63:1007–1012 [CrossRef][PubMed]
    [Google Scholar]
  17. Gordon RE, Mihm JM. Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 1962;98:628–636 [CrossRef]
    [Google Scholar]
  18. Lane DJ. 16S/23S RNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics London: John Wiley & Sons Ltd; 1991; pp.115–175
    [Google Scholar]
  19. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  20. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HH. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  22. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 1967;155:279–284 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. PHYLIP – phylogeny inference package (version 3.2). Cladistics 1989;5:164–166
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  26. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  27. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  29. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. Menlo Park, CA: Benjamin/Cummings; 2002
    [Google Scholar]
  30. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  32. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–208[Crossref]
    [Google Scholar]
  35. Imhoff JF, Truper HG, Pfennig N. Rearrangement of the species and genera of the phototrophic "purple nonsulfur bacteria". Int J Syst Bacteriol 1984;34:340–343 [CrossRef]
    [Google Scholar]
  36. Hiraishi A, Ueda Y. Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 1994;44:15–23 [CrossRef]
    [Google Scholar]
  37. Maszenan AM, Seviour RJ, Patel BK, Rees GN, Mcdougall BM. Amaricoccus gen. nov., a gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 1997;47:727–734 [CrossRef][PubMed]
    [Google Scholar]
  38. Suzuki T, Muroga Y, Takahama M, Shiba T, Nishimura Y. Rubrimonas cliftonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from a saline lake. Int J Syst Bacteriol 1999;49:201–205 [CrossRef][PubMed]
    [Google Scholar]
  39. Albuquerque L, Santos J, Travassos P, Nobre MF, Rainey FA et al. Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 2002;68:4266–4273 [CrossRef][PubMed]
    [Google Scholar]
  40. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. Int J Syst Evol Microbiol 2004;54:1129–1136 [CrossRef][PubMed]
    [Google Scholar]
  41. Sorokin DY, Tourova TP, Spiridonova EM, Rainey FA, Muyzer G. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol 2005;55:1069–1075 [CrossRef][PubMed]
    [Google Scholar]
  42. Yoon JH, Lee SY, Kang SJ, Lee CH, Oh TK. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007;57:542–547 [CrossRef][PubMed]
    [Google Scholar]
  43. Lim JM, Jeon CO, Jang HH, Park DJ, Shin YK et al. Albimonas donghaensis gen. nov., sp. nov., a non-photosynthetic member of the class Alphaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 2008;58:282–285 [CrossRef][PubMed]
    [Google Scholar]
  44. Ramaprasad EVV, Tushar L, Dave B, Sasikala C, Ramana CV. Rhodovulum algae sp. nov., isolated from an algal mat. Int J Syst Evol Microbiol 2016;66:3367–3371 [CrossRef][PubMed]
    [Google Scholar]
  45. Park S, Park JM, Kang CH, Yoon JH. Confluentimicrobium lipolyticum gen. nov., sp. nov., a novel lipolytic alphaproteobacterium isolated from the junction between the ocean and a freshwater spring, and emended description of Actibacterium mucosum Lucena et al. 2012. Antonie van Leeuwenhoek 2014;106:969–977 [CrossRef][PubMed]
    [Google Scholar]
  46. Cai M, Wang L, Cai H, Li Y, Tang YQ et al. Rubrimonas shengliensis sp. nov. and Polymorphum gilvum gen. nov., sp. nov., novel members of Alphaproteobacteria from crude oil contaminated saline soil. Syst Appl Microbiol 2011;34:321–327 [CrossRef][PubMed]
    [Google Scholar]
  47. Srinivas TNR, Kumar PA, Sasikala C, Ramana C. Rhodovulum imhoffii sp. nov. Int J Syst Evol Microbiol 2007;57:228–232 [CrossRef][PubMed]
    [Google Scholar]
  48. Li GW, Zhang XY, Wang CS, Zhang YJ, Xu XW et al. Albimonas pacifica sp. nov., isolated from seawater of the Pacific, and emended description of the genus Albimonas. Int J Syst Evol Microbiol 2013;63:3597–3601 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002200
Loading
/content/journal/ijsem/10.1099/ijsem.0.002200
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error